You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
440 lines
16 KiB
440 lines
16 KiB
# -*- coding: future_fstrings -*-
|
|
#
|
|
# Copyright 2019 Gianluca Frison, Dimitris Kouzoupis, Robin Verschueren,
|
|
# Andrea Zanelli, Niels van Duijkeren, Jonathan Frey, Tommaso Sartor,
|
|
# Branimir Novoselnik, Rien Quirynen, Rezart Qelibari, Dang Doan,
|
|
# Jonas Koenemann, Yutao Chen, Tobias Schöls, Jonas Schlagenhauf, Moritz Diehl
|
|
#
|
|
# This file is part of acados.
|
|
#
|
|
# The 2-Clause BSD License
|
|
#
|
|
# Redistribution and use in source and binary forms, with or without
|
|
# modification, are permitted provided that the following conditions are met:
|
|
#
|
|
# 1. Redistributions of source code must retain the above copyright notice,
|
|
# this list of conditions and the following disclaimer.
|
|
#
|
|
# 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
# this list of conditions and the following disclaimer in the documentation
|
|
# and/or other materials provided with the distribution.
|
|
#
|
|
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
|
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
# POSSIBILITY OF SUCH DAMAGE.;
|
|
#
|
|
|
|
import os, sys, json
|
|
import urllib.request
|
|
import shutil
|
|
import numpy as np
|
|
from casadi import SX, MX, DM, Function, CasadiMeta
|
|
|
|
ALLOWED_CASADI_VERSIONS = ('3.5.5', '3.5.4', '3.5.3', '3.5.2', '3.5.1', '3.4.5', '3.4.0')
|
|
|
|
TERA_VERSION = "0.0.34"
|
|
|
|
def get_acados_path():
|
|
ACADOS_PATH = os.environ.get('ACADOS_SOURCE_DIR')
|
|
if not ACADOS_PATH:
|
|
acados_template_path = os.path.dirname(os.path.abspath(__file__))
|
|
acados_path = os.path.join(acados_template_path, '..','..','..')
|
|
ACADOS_PATH = os.path.realpath(acados_path)
|
|
msg = 'Warning: Did not find environment variable ACADOS_SOURCE_DIR, '
|
|
msg += 'guessed ACADOS_PATH to be {}.\n'.format(ACADOS_PATH)
|
|
msg += 'Please export ACADOS_SOURCE_DIR to avoid this warning.'
|
|
print(msg)
|
|
return ACADOS_PATH
|
|
|
|
|
|
def get_python_interface_path():
|
|
ACADOS_PYTHON_INTERFACE_PATH = os.environ.get('ACADOS_PYTHON_INTERFACE_PATH')
|
|
if not ACADOS_PYTHON_INTERFACE_PATH:
|
|
acados_path = get_acados_path()
|
|
ACADOS_PYTHON_INTERFACE_PATH = os.path.join(acados_path, 'interfaces', 'acados_template', 'acados_template')
|
|
return ACADOS_PYTHON_INTERFACE_PATH
|
|
|
|
|
|
def get_tera_exec_path():
|
|
TERA_PATH = os.environ.get('TERA_PATH')
|
|
if not TERA_PATH:
|
|
TERA_PATH = os.path.join(get_acados_path(), 'bin', 't_renderer')
|
|
if os.name == 'nt':
|
|
TERA_PATH += '.exe'
|
|
return TERA_PATH
|
|
|
|
|
|
platform2tera = {
|
|
"linux": "linux",
|
|
"darwin": "osx",
|
|
"win32": "windows"
|
|
}
|
|
|
|
|
|
def casadi_version_warning(casadi_version):
|
|
msg = 'Warning: Please note that the following versions of CasADi are '
|
|
msg += 'officially supported: {}.\n '.format(" or ".join(ALLOWED_CASADI_VERSIONS))
|
|
msg += 'If there is an incompatibility with the CasADi generated code, '
|
|
msg += 'please consider changing your CasADi version.\n'
|
|
msg += 'Version {} currently in use.'.format(casadi_version)
|
|
print(msg)
|
|
|
|
|
|
def is_column(x):
|
|
if isinstance(x, np.ndarray):
|
|
if x.ndim == 1:
|
|
return True
|
|
elif x.ndim == 2 and x.shape[1] == 1:
|
|
return True
|
|
else:
|
|
return False
|
|
elif isinstance(x, (MX, SX, DM)):
|
|
if x.shape[1] == 1:
|
|
return True
|
|
elif x.shape[0] == 0 and x.shape[1] == 0:
|
|
return True
|
|
else:
|
|
return False
|
|
elif x == None or x == []:
|
|
return False
|
|
else:
|
|
raise Exception("is_column expects one of the following types: np.ndarray, casadi.MX, casadi.SX."
|
|
+ " Got: " + str(type(x)))
|
|
|
|
|
|
def is_empty(x):
|
|
if isinstance(x, (MX, SX, DM)):
|
|
return x.is_empty()
|
|
elif isinstance(x, np.ndarray):
|
|
if np.prod(x.shape) == 0:
|
|
return True
|
|
else:
|
|
return False
|
|
elif x == None or x == []:
|
|
return True
|
|
else:
|
|
raise Exception("is_empty expects one of the following types: casadi.MX, casadi.SX, "
|
|
+ "None, numpy array empty list. Got: " + str(type(x)))
|
|
|
|
|
|
def casadi_length(x):
|
|
if isinstance(x, (MX, SX, DM)):
|
|
return int(np.prod(x.shape))
|
|
else:
|
|
raise Exception("casadi_length expects one of the following types: casadi.MX, casadi.SX."
|
|
+ " Got: " + str(type(x)))
|
|
|
|
|
|
def make_model_consistent(model):
|
|
x = model.x
|
|
xdot = model.xdot
|
|
u = model.u
|
|
z = model.z
|
|
p = model.p
|
|
|
|
if isinstance(x, MX):
|
|
symbol = MX.sym
|
|
elif isinstance(x, SX):
|
|
symbol = SX.sym
|
|
else:
|
|
raise Exception("model.x must be casadi.SX or casadi.MX, got {}".format(type(x)))
|
|
|
|
if is_empty(p):
|
|
model.p = symbol('p', 0, 0)
|
|
|
|
if is_empty(z):
|
|
model.z = symbol('z', 0, 0)
|
|
|
|
return model
|
|
|
|
|
|
def get_tera():
|
|
tera_path = get_tera_exec_path()
|
|
acados_path = get_acados_path()
|
|
|
|
if os.path.exists(tera_path) and os.access(tera_path, os.X_OK):
|
|
return tera_path
|
|
|
|
repo_url = "https://github.com/acados/tera_renderer/releases"
|
|
url = "{}/download/v{}/t_renderer-v{}-{}".format(
|
|
repo_url, TERA_VERSION, TERA_VERSION, platform2tera[sys.platform])
|
|
|
|
manual_install = 'For manual installation follow these instructions:\n'
|
|
manual_install += '1 Download binaries from {}\n'.format(url)
|
|
manual_install += '2 Copy them in {}/bin\n'.format(acados_path)
|
|
manual_install += '3 Strip the version and platform from the binaries: '
|
|
manual_install += 'as t_renderer-v0.0.34-X -> t_renderer)\n'
|
|
manual_install += '4 Enable execution privilege on the file "t_renderer" with:\n'
|
|
manual_install += '"chmod +x {}"\n\n'.format(tera_path)
|
|
|
|
msg = "\n"
|
|
msg += 'Tera template render executable not found, '
|
|
msg += 'while looking in path:\n{}\n'.format(tera_path)
|
|
msg += 'In order to be able to render the templates, '
|
|
msg += 'you need to download the tera renderer binaries from:\n'
|
|
msg += '{}\n\n'.format(repo_url)
|
|
msg += 'Do you wish to set up Tera renderer automatically?\n'
|
|
msg += 'y/N? (press y to download tera or any key for manual installation)\n'
|
|
|
|
if input(msg) == 'y':
|
|
print("Dowloading {}".format(url))
|
|
with urllib.request.urlopen(url) as response, open(tera_path, 'wb') as out_file:
|
|
shutil.copyfileobj(response, out_file)
|
|
print("Successfully downloaded t_renderer.")
|
|
os.chmod(tera_path, 0o755)
|
|
return tera_path
|
|
|
|
msg_cancel = "\nYou cancelled automatic download.\n\n"
|
|
msg_cancel += manual_install
|
|
msg_cancel += "Once installed re-run your script.\n\n"
|
|
print(msg_cancel)
|
|
|
|
sys.exit(1)
|
|
|
|
|
|
def render_template(in_file, out_file, template_dir, json_path):
|
|
cwd = os.getcwd()
|
|
if not os.path.exists(template_dir):
|
|
os.mkdir(template_dir)
|
|
os.chdir(template_dir)
|
|
|
|
tera_path = get_tera()
|
|
|
|
# setting up loader and environment
|
|
acados_path = os.path.dirname(os.path.abspath(__file__))
|
|
template_glob = os.path.join(acados_path, 'c_templates_tera', '*')
|
|
|
|
# call tera as system cmd
|
|
os_cmd = f"{tera_path} '{template_glob}' '{in_file}' '{json_path}' '{out_file}'"
|
|
# Windows cmd.exe can not cope with '...', so use "..." instead:
|
|
if os.name == 'nt':
|
|
os_cmd = os_cmd.replace('\'', '\"')
|
|
|
|
status = os.system(os_cmd)
|
|
if (status != 0):
|
|
raise Exception(f'Rendering of {in_file} failed!\n\nAttempted to execute OS command:\n{os_cmd}\n\nExiting.\n')
|
|
|
|
os.chdir(cwd)
|
|
|
|
|
|
## Conversion functions
|
|
def np_array_to_list(np_array):
|
|
if isinstance(np_array, (np.ndarray)):
|
|
return np_array.tolist()
|
|
elif isinstance(np_array, (SX)):
|
|
return DM(np_array).full()
|
|
elif isinstance(np_array, (DM)):
|
|
return np_array.full()
|
|
else:
|
|
raise(Exception(f"Cannot convert to list type {type(np_array)}"))
|
|
|
|
|
|
def format_class_dict(d):
|
|
"""
|
|
removes the __ artifact from class to dict conversion
|
|
"""
|
|
out = {}
|
|
for k, v in d.items():
|
|
if isinstance(v, dict):
|
|
v = format_class_dict(v)
|
|
|
|
out_key = k.split('__', 1)[-1]
|
|
out[k.replace(k, out_key)] = v
|
|
return out
|
|
|
|
|
|
def get_ocp_nlp_layout():
|
|
python_interface_path = get_python_interface_path()
|
|
abs_path = os.path.join(python_interface_path, 'acados_layout.json')
|
|
with open(abs_path, 'r') as f:
|
|
ocp_nlp_layout = json.load(f)
|
|
return ocp_nlp_layout
|
|
|
|
|
|
def ocp_check_against_layout(ocp_nlp, ocp_dims):
|
|
"""
|
|
Check dimensions against layout
|
|
Parameters
|
|
---------
|
|
ocp_nlp : dict
|
|
dictionary loaded from JSON to be post-processed.
|
|
|
|
ocp_dims : instance of AcadosOcpDims
|
|
"""
|
|
|
|
ocp_nlp_layout = get_ocp_nlp_layout()
|
|
|
|
ocp_check_against_layout_recursion(ocp_nlp, ocp_dims, ocp_nlp_layout)
|
|
return
|
|
|
|
|
|
def ocp_check_against_layout_recursion(ocp_nlp, ocp_dims, layout):
|
|
|
|
for key, item in ocp_nlp.items():
|
|
|
|
try:
|
|
layout_of_key = layout[key]
|
|
except KeyError:
|
|
raise Exception("ocp_check_against_layout_recursion: field" \
|
|
" '{0}' is not in layout but in OCP description.".format(key))
|
|
|
|
if isinstance(item, dict):
|
|
ocp_check_against_layout_recursion(item, ocp_dims, layout_of_key)
|
|
|
|
if 'ndarray' in layout_of_key:
|
|
if isinstance(item, int) or isinstance(item, float):
|
|
item = np.array([item])
|
|
if isinstance(item, (list, np.ndarray)) and (layout_of_key[0] != 'str'):
|
|
dim_layout = []
|
|
dim_names = layout_of_key[1]
|
|
|
|
for dim_name in dim_names:
|
|
dim_layout.append(ocp_dims[dim_name])
|
|
|
|
dims = tuple(dim_layout)
|
|
|
|
item = np.array(item)
|
|
item_dims = item.shape
|
|
if len(item_dims) != len(dims):
|
|
raise Exception('Mismatching dimensions for field {0}. ' \
|
|
'Expected {1} dimensional array, got {2} dimensional array.' \
|
|
.format(key, len(dims), len(item_dims)))
|
|
|
|
if np.prod(item_dims) != 0 or np.prod(dims) != 0:
|
|
if dims != item_dims:
|
|
raise Exception('acados -- mismatching dimensions for field {0}. ' \
|
|
'Provided data has dimensions {1}, ' \
|
|
'while associated dimensions {2} are {3}' \
|
|
.format(key, item_dims, dim_names, dims))
|
|
return
|
|
|
|
|
|
def J_to_idx(J):
|
|
nrows = J.shape[0]
|
|
idx = np.zeros((nrows, ))
|
|
for i in range(nrows):
|
|
this_idx = np.nonzero(J[i,:])[0]
|
|
if len(this_idx) != 1:
|
|
raise Exception('Invalid J matrix structure detected, ' \
|
|
'must contain one nonzero element per row. Exiting.')
|
|
if this_idx.size > 0 and J[i,this_idx[0]] != 1:
|
|
raise Exception('J matrices can only contain 1s. Exiting.')
|
|
idx[i] = this_idx[0]
|
|
return idx
|
|
|
|
|
|
def J_to_idx_slack(J):
|
|
nrows = J.shape[0]
|
|
ncol = J.shape[1]
|
|
idx = np.zeros((ncol, ))
|
|
i_idx = 0
|
|
for i in range(nrows):
|
|
this_idx = np.nonzero(J[i,:])[0]
|
|
if len(this_idx) == 1:
|
|
idx[i_idx] = i
|
|
i_idx = i_idx + 1
|
|
elif len(this_idx) > 1:
|
|
raise Exception('J_to_idx_slack: Invalid J matrix. Exiting. ' \
|
|
'Found more than one nonzero in row ' + str(i))
|
|
if this_idx.size > 0 and J[i,this_idx[0]] != 1:
|
|
raise Exception('J_to_idx_slack: J matrices can only contain 1s, ' \
|
|
'got J(' + str(i) + ', ' + str(this_idx[0]) + ') = ' + str(J[i,this_idx[0]]) )
|
|
if not i_idx == ncol:
|
|
raise Exception('J_to_idx_slack: J must contain a 1 in every column!')
|
|
return idx
|
|
|
|
|
|
def acados_dae_model_json_dump(model):
|
|
|
|
# load model
|
|
x = model.x
|
|
xdot = model.xdot
|
|
u = model.u
|
|
z = model.z
|
|
p = model.p
|
|
|
|
f_impl = model.f_impl_expr
|
|
model_name = model.name
|
|
|
|
# create struct with impl_dae_fun, casadi_version
|
|
fun_name = model_name + '_impl_dae_fun'
|
|
impl_dae_fun = Function(fun_name, [x, xdot, u, z, p], [f_impl])
|
|
|
|
casadi_version = CasadiMeta.version()
|
|
str_impl_dae_fun = impl_dae_fun.serialize()
|
|
|
|
dae_dict = {"str_impl_dae_fun": str_impl_dae_fun, "casadi_version": casadi_version}
|
|
|
|
# dump
|
|
json_file = model_name + '_acados_dae.json'
|
|
with open(json_file, 'w') as f:
|
|
json.dump(dae_dict, f, default=np_array_to_list, indent=4, sort_keys=True)
|
|
print("dumped ", model_name, " dae to file:", json_file, "\n")
|
|
|
|
|
|
def set_up_imported_gnsf_model(acados_formulation):
|
|
|
|
gnsf = acados_formulation.gnsf_model
|
|
|
|
# check CasADi version
|
|
# dump_casadi_version = gnsf['casadi_version']
|
|
# casadi_version = CasadiMeta.version()
|
|
|
|
# if not casadi_version == dump_casadi_version:
|
|
# print("WARNING: GNSF model was dumped with another CasADi version.\n"
|
|
# + "This might yield errors. Please use the same version for compatibility, serialize version: "
|
|
# + dump_casadi_version + " current Python CasADi verison: " + casadi_version)
|
|
# input("Press any key to attempt to continue...")
|
|
|
|
# load model
|
|
phi_fun = Function.deserialize(gnsf['phi_fun'])
|
|
phi_fun_jac_y = Function.deserialize(gnsf['phi_fun_jac_y'])
|
|
phi_jac_y_uhat = Function.deserialize(gnsf['phi_jac_y_uhat'])
|
|
get_matrices_fun = Function.deserialize(gnsf['get_matrices_fun'])
|
|
|
|
# obtain gnsf dimensions
|
|
size_gnsf_A = get_matrices_fun.size_out(0)
|
|
acados_formulation.dims.gnsf_nx1 = size_gnsf_A[1]
|
|
acados_formulation.dims.gnsf_nz1 = size_gnsf_A[0] - size_gnsf_A[1]
|
|
acados_formulation.dims.gnsf_nuhat = max(phi_fun.size_in(1))
|
|
acados_formulation.dims.gnsf_ny = max(phi_fun.size_in(0))
|
|
acados_formulation.dims.gnsf_nout = max(phi_fun.size_out(0))
|
|
|
|
# save gnsf functions in model
|
|
acados_formulation.model.phi_fun = phi_fun
|
|
acados_formulation.model.phi_fun_jac_y = phi_fun_jac_y
|
|
acados_formulation.model.phi_jac_y_uhat = phi_jac_y_uhat
|
|
acados_formulation.model.get_matrices_fun = get_matrices_fun
|
|
|
|
# get_matrices_fun = Function([model_name,'_gnsf_get_matrices_fun'], {dummy},...
|
|
# {A, B, C, E, L_x, L_xdot, L_z, L_u, A_LO, c, E_LO, B_LO,...
|
|
# nontrivial_f_LO, purely_linear, ipiv_x, ipiv_z, c_LO});
|
|
get_matrices_out = get_matrices_fun(0)
|
|
acados_formulation.model.gnsf['nontrivial_f_LO'] = int(get_matrices_out[12])
|
|
acados_formulation.model.gnsf['purely_linear'] = int(get_matrices_out[13])
|
|
|
|
if "f_lo_fun_jac_x1k1uz" in gnsf:
|
|
f_lo_fun_jac_x1k1uz = Function.deserialize(gnsf['f_lo_fun_jac_x1k1uz'])
|
|
acados_formulation.model.f_lo_fun_jac_x1k1uz = f_lo_fun_jac_x1k1uz
|
|
else:
|
|
dummy_var_x1 = SX.sym('dummy_var_x1', acados_formulation.dims.gnsf_nx1)
|
|
dummy_var_x1dot = SX.sym('dummy_var_x1dot', acados_formulation.dims.gnsf_nx1)
|
|
dummy_var_z1 = SX.sym('dummy_var_z1', acados_formulation.dims.gnsf_nz1)
|
|
dummy_var_u = SX.sym('dummy_var_z1', acados_formulation.dims.nu)
|
|
dummy_var_p = SX.sym('dummy_var_z1', acados_formulation.dims.np)
|
|
empty_var = SX.sym('empty_var', 0, 0)
|
|
|
|
empty_fun = Function('empty_fun', \
|
|
[dummy_var_x1, dummy_var_x1dot, dummy_var_z1, dummy_var_u, dummy_var_p],
|
|
[empty_var])
|
|
acados_formulation.model.f_lo_fun_jac_x1k1uz = empty_fun
|
|
|
|
del acados_formulation.gnsf_model
|
|
|