You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							589 lines
						
					
					
						
							25 KiB
						
					
					
				
			
		
		
	
	
							589 lines
						
					
					
						
							25 KiB
						
					
					
				| #!/usr/bin/env python3
 | |
| 
 | |
| import sys
 | |
| 
 | |
| import numpy as np
 | |
| import sympy as sp
 | |
| 
 | |
| from selfdrive.locationd.models.constants import ObservationKind
 | |
| from rednose.helpers.ekf_sym import EKF_sym, gen_code
 | |
| from rednose.helpers.lst_sq_computer import LstSqComputer
 | |
| from rednose.helpers.sympy_helpers import euler_rotate, quat_matrix_r, quat_rotate
 | |
| 
 | |
| EARTH_GM = 3.986005e14  # m^3/s^2 (gravitational constant * mass of earth)
 | |
| 
 | |
| 
 | |
| def parse_prr(m):
 | |
|   from laika.raw_gnss import GNSSMeasurement
 | |
|   sat_pos_vel_i = np.concatenate((m[GNSSMeasurement.SAT_POS],
 | |
|                                   m[GNSSMeasurement.SAT_VEL]))
 | |
|   R_i = np.atleast_2d(m[GNSSMeasurement.PRR_STD]**2)
 | |
|   z_i = m[GNSSMeasurement.PRR]
 | |
|   return z_i, R_i, sat_pos_vel_i
 | |
| 
 | |
| 
 | |
| def parse_pr(m):
 | |
|   from laika.raw_gnss import GNSSMeasurement
 | |
|   pseudorange = m[GNSSMeasurement.PR]
 | |
|   pseudorange_stdev = m[GNSSMeasurement.PR_STD]
 | |
|   sat_pos_freq_i = np.concatenate((m[GNSSMeasurement.SAT_POS],
 | |
|                                    np.array([m[GNSSMeasurement.GLONASS_FREQ]])))
 | |
|   z_i = np.atleast_1d(pseudorange)
 | |
|   R_i = np.atleast_2d(pseudorange_stdev**2)
 | |
|   return z_i, R_i, sat_pos_freq_i
 | |
| 
 | |
| 
 | |
| class States():
 | |
|   ECEF_POS = slice(0, 3)  # x, y and z in ECEF in meters
 | |
|   ECEF_ORIENTATION = slice(3, 7)  # quat for orientation of phone in ecef
 | |
|   ECEF_VELOCITY = slice(7, 10)  # ecef velocity in m/s
 | |
|   ANGULAR_VELOCITY = slice(10, 13)  # roll, pitch and yaw rates in device frame in radians/s
 | |
|   CLOCK_BIAS = slice(13, 14)  # clock bias in light-meters,
 | |
|   CLOCK_DRIFT = slice(14, 15)  # clock drift in light-meters/s,
 | |
|   GYRO_BIAS = slice(15, 18)  # roll, pitch and yaw biases
 | |
|   ODO_SCALE = slice(18, 19)  # odometer scale
 | |
|   ACCELERATION = slice(19, 22)  # Acceleration in device frame in m/s**2
 | |
|   FOCAL_SCALE = slice(22, 23)  # focal length scale
 | |
|   IMU_OFFSET = slice(23, 26)  # imu offset angles in radians
 | |
|   GLONASS_BIAS = slice(26, 27)  # GLONASS bias in m expressed as bias + freq_num*freq_slope
 | |
|   GLONASS_FREQ_SLOPE = slice(27, 28)  # GLONASS bias in m expressed as bias + freq_num*freq_slope
 | |
|   CLOCK_ACCELERATION = slice(28, 29)  # clock acceleration in light-meters/s**2,
 | |
|   ACCELEROMETER_SCALE = slice(29, 30)  # scale of mems accelerometer
 | |
| 
 | |
|   # Error-state has different slices because it is an ESKF
 | |
|   ECEF_POS_ERR = slice(0, 3)
 | |
|   ECEF_ORIENTATION_ERR = slice(3, 6)  # euler angles for orientation error
 | |
|   ECEF_VELOCITY_ERR = slice(6, 9)
 | |
|   ANGULAR_VELOCITY_ERR = slice(9, 12)
 | |
|   CLOCK_BIAS_ERR = slice(12, 13)
 | |
|   CLOCK_DRIFT_ERR = slice(13, 14)
 | |
|   GYRO_BIAS_ERR = slice(14, 17)
 | |
|   ODO_SCALE_ERR = slice(17, 18)
 | |
|   ACCELERATION_ERR = slice(18, 21)
 | |
|   FOCAL_SCALE_ERR = slice(21, 22)
 | |
|   IMU_OFFSET_ERR = slice(22, 25)
 | |
|   GLONASS_BIAS_ERR = slice(25, 26)
 | |
|   GLONASS_FREQ_SLOPE_ERR = slice(26, 27)
 | |
|   CLOCK_ACCELERATION_ERR = slice(27, 28)
 | |
|   ACCELEROMETER_SCALE_ERR = slice(28, 29)
 | |
| 
 | |
| 
 | |
| class LocKalman():
 | |
|   name = "loc"
 | |
|   x_initial = np.array([0, 0, 0,
 | |
|                         1, 0, 0, 0,
 | |
|                         0, 0, 0,
 | |
|                         0, 0, 0,
 | |
|                         0, 0,
 | |
|                         0, 0, 0,
 | |
|                         1,
 | |
|                         0, 0, 0,
 | |
|                         1,
 | |
|                         0, 0, 0,
 | |
|                         0, 0,
 | |
|                         0,
 | |
|                         1], dtype=np.float64)
 | |
| 
 | |
|   # state covariance
 | |
|   P_initial = np.diag([1e16, 1e16, 1e16,
 | |
|                        10**2, 10**2, 10**2,
 | |
|                        10**2, 10**2, 10**2,
 | |
|                        1**2, 1**2, 1**2,
 | |
|                        1e14, (100)**2,
 | |
|                        0.05**2, 0.05**2, 0.05**2,
 | |
|                        0.02**2,
 | |
|                        2**2, 2**2, 2**2,
 | |
|                        0.01**2,
 | |
|                        (0.01)**2, (0.01)**2, (0.01)**2,
 | |
|                        10**2, 1**2,
 | |
|                        0.2**2,
 | |
|                        0.05**2])
 | |
| 
 | |
|   # process noise
 | |
|   Q = np.diag([0.03**2, 0.03**2, 0.03**2,
 | |
|                0.0**2, 0.0**2, 0.0**2,
 | |
|                0.0**2, 0.0**2, 0.0**2,
 | |
|                0.1**2, 0.1**2, 0.1**2,
 | |
|                (.1)**2, (0.0)**2,
 | |
|                (0.005 / 100)**2, (0.005 / 100)**2, (0.005 / 100)**2,
 | |
|                (0.02 / 100)**2,
 | |
|                3**2, 3**2, 3**2,
 | |
|                0.001**2,
 | |
|                (0.05 / 60)**2, (0.05 / 60)**2, (0.05 / 60)**2,
 | |
|                (.1)**2, (.01)**2,
 | |
|                0.005**2,
 | |
|                (0.02 / 100)**2])
 | |
| 
 | |
|   # measurements that need to pass mahalanobis distance outlier rejector
 | |
|   maha_test_kinds = [ObservationKind.ORB_FEATURES]  # , ObservationKind.PSEUDORANGE, ObservationKind.PSEUDORANGE_RATE]
 | |
|   dim_augment = 7
 | |
|   dim_augment_err = 6
 | |
| 
 | |
|   @staticmethod
 | |
|   def generate_code(generated_dir, N=4):
 | |
|     dim_augment = LocKalman.dim_augment
 | |
|     dim_augment_err = LocKalman.dim_augment_err
 | |
| 
 | |
|     dim_main = LocKalman.x_initial.shape[0]
 | |
|     dim_main_err = LocKalman.P_initial.shape[0]
 | |
|     dim_state = dim_main + dim_augment * N
 | |
|     dim_state_err = dim_main_err + dim_augment_err * N
 | |
|     maha_test_kinds = LocKalman.maha_test_kinds
 | |
| 
 | |
|     name = f"{LocKalman.name}_{N}"
 | |
| 
 | |
|     # make functions and jacobians with sympy
 | |
|     # state variables
 | |
|     state_sym = sp.MatrixSymbol('state', dim_state, 1)
 | |
|     state = sp.Matrix(state_sym)
 | |
|     x, y, z = state[States.ECEF_POS, :]
 | |
|     q = state[States.ECEF_ORIENTATION, :]
 | |
|     v = state[States.ECEF_VELOCITY, :]
 | |
|     vx, vy, vz = v
 | |
|     omega = state[States.ANGULAR_VELOCITY, :]
 | |
|     vroll, vpitch, vyaw = omega
 | |
|     cb = state[States.CLOCK_BIAS, :]
 | |
|     cd = state[States.CLOCK_DRIFT, :]
 | |
|     roll_bias, pitch_bias, yaw_bias = state[States.GYRO_BIAS, :]
 | |
|     odo_scale = state[States.ODO_SCALE, :]
 | |
|     acceleration = state[States.ACCELERATION, :]
 | |
|     focal_scale = state[States.FOCAL_SCALE, :]
 | |
|     imu_angles = state[States.IMU_OFFSET, :]
 | |
|     imu_angles[0, 0] = 0
 | |
|     imu_angles[2, 0] = 0
 | |
|     glonass_bias = state[States.GLONASS_BIAS, :]
 | |
|     glonass_freq_slope = state[States.GLONASS_FREQ_SLOPE, :]
 | |
|     ca = state[States.CLOCK_ACCELERATION, :]
 | |
|     accel_scale = state[States.ACCELEROMETER_SCALE, :]
 | |
| 
 | |
|     dt = sp.Symbol('dt')
 | |
| 
 | |
|     # calibration and attitude rotation matrices
 | |
|     quat_rot = quat_rotate(*q)
 | |
| 
 | |
|     # Got the quat predict equations from here
 | |
|     # A New Quaternion-Based Kalman Filter for
 | |
|     # Real-Time Attitude Estimation Using the Two-Step
 | |
|     # Geometrically-Intuitive Correction Algorithm
 | |
|     A = 0.5 * sp.Matrix([[0, -vroll, -vpitch, -vyaw],
 | |
|                          [vroll, 0, vyaw, -vpitch],
 | |
|                          [vpitch, -vyaw, 0, vroll],
 | |
|                          [vyaw, vpitch, -vroll, 0]])
 | |
|     q_dot = A * q
 | |
| 
 | |
|     # Time derivative of the state as a function of state
 | |
|     state_dot = sp.Matrix(np.zeros((dim_state, 1)))
 | |
|     state_dot[States.ECEF_POS, :] = v
 | |
|     state_dot[States.ECEF_ORIENTATION, :] = q_dot
 | |
|     state_dot[States.ECEF_VELOCITY, 0] = quat_rot * acceleration
 | |
|     state_dot[States.CLOCK_BIAS, :] = cd
 | |
|     state_dot[States.CLOCK_DRIFT, :] = ca
 | |
| 
 | |
|     # Basic descretization, 1st order intergrator
 | |
|     # Can be pretty bad if dt is big
 | |
|     f_sym = state + dt * state_dot
 | |
| 
 | |
|     state_err_sym = sp.MatrixSymbol('state_err', dim_state_err, 1)
 | |
|     state_err = sp.Matrix(state_err_sym)
 | |
|     quat_err = state_err[States.ECEF_ORIENTATION_ERR, :]
 | |
|     v_err = state_err[States.ECEF_VELOCITY_ERR, :]
 | |
|     omega_err = state_err[States.ANGULAR_VELOCITY_ERR, :]
 | |
|     cd_err = state_err[States.CLOCK_DRIFT_ERR, :]
 | |
|     acceleration_err = state_err[States.ACCELERATION_ERR, :]
 | |
|     ca_err = state_err[States.CLOCK_ACCELERATION_ERR, :]
 | |
| 
 | |
|     # Time derivative of the state error as a function of state error and state
 | |
|     quat_err_matrix = euler_rotate(quat_err[0], quat_err[1], quat_err[2])
 | |
|     q_err_dot = quat_err_matrix * quat_rot * (omega + omega_err)
 | |
|     state_err_dot = sp.Matrix(np.zeros((dim_state_err, 1)))
 | |
|     state_err_dot[States.ECEF_POS_ERR, :] = v_err
 | |
|     state_err_dot[States.ECEF_ORIENTATION_ERR, :] = q_err_dot
 | |
|     state_err_dot[States.ECEF_VELOCITY_ERR, :] = quat_err_matrix * quat_rot * (acceleration + acceleration_err)
 | |
|     state_err_dot[States.CLOCK_BIAS_ERR, :] = cd_err
 | |
|     state_err_dot[States.CLOCK_DRIFT_ERR, :] = ca_err
 | |
|     f_err_sym = state_err + dt * state_err_dot
 | |
| 
 | |
|     # convenient indexing
 | |
|     # q idxs are for quats and p idxs are for other
 | |
|     q_idxs = [[3, dim_augment]] + [[dim_main + n * dim_augment + 3, dim_main + (n + 1) * dim_augment] for n in range(N)]
 | |
|     q_err_idxs = [[3, dim_augment_err]] + [[dim_main_err + n * dim_augment_err + 3, dim_main_err + (n + 1) * dim_augment_err] for n in range(N)]
 | |
|     p_idxs = [[0, 3]] + [[dim_augment, dim_main]] + [[dim_main + n * dim_augment, dim_main + n * dim_augment + 3] for n in range(N)]
 | |
|     p_err_idxs = [[0, 3]] + [[dim_augment_err, dim_main_err]] + [[dim_main_err + n * dim_augment_err, dim_main_err + n * dim_augment_err + 3] for n in range(N)]
 | |
| 
 | |
|     # Observation matrix modifier
 | |
|     H_mod_sym = sp.Matrix(np.zeros((dim_state, dim_state_err)))
 | |
|     for p_idx, p_err_idx in zip(p_idxs, p_err_idxs):
 | |
|       H_mod_sym[p_idx[0]:p_idx[1], p_err_idx[0]:p_err_idx[1]] = np.eye(p_idx[1] - p_idx[0])
 | |
|     for q_idx, q_err_idx in zip(q_idxs, q_err_idxs):
 | |
|       H_mod_sym[q_idx[0]:q_idx[1], q_err_idx[0]:q_err_idx[1]] = 0.5 * quat_matrix_r(state[q_idx[0]:q_idx[1]])[:, 1:]
 | |
| 
 | |
|     # these error functions are defined so that say there
 | |
|     # is a nominal x and true x:
 | |
|     # true x = err_function(nominal x, delta x)
 | |
|     # delta x = inv_err_function(nominal x, true x)
 | |
|     nom_x = sp.MatrixSymbol('nom_x', dim_state, 1)
 | |
|     true_x = sp.MatrixSymbol('true_x', dim_state, 1)
 | |
|     delta_x = sp.MatrixSymbol('delta_x', dim_state_err, 1)
 | |
| 
 | |
|     err_function_sym = sp.Matrix(np.zeros((dim_state, 1)))
 | |
|     for q_idx, q_err_idx in zip(q_idxs, q_err_idxs):
 | |
|       delta_quat = sp.Matrix(np.ones((4)))
 | |
|       delta_quat[1:, :] = sp.Matrix(0.5 * delta_x[q_err_idx[0]: q_err_idx[1], :])
 | |
|       err_function_sym[q_idx[0]:q_idx[1], 0] = quat_matrix_r(nom_x[q_idx[0]:q_idx[1], 0]) * delta_quat
 | |
|     for p_idx, p_err_idx in zip(p_idxs, p_err_idxs):
 | |
|       err_function_sym[p_idx[0]:p_idx[1], :] = sp.Matrix(nom_x[p_idx[0]:p_idx[1], :] + delta_x[p_err_idx[0]:p_err_idx[1], :])
 | |
| 
 | |
|     inv_err_function_sym = sp.Matrix(np.zeros((dim_state_err, 1)))
 | |
|     for p_idx, p_err_idx in zip(p_idxs, p_err_idxs):
 | |
|       inv_err_function_sym[p_err_idx[0]:p_err_idx[1], 0] = sp.Matrix(-nom_x[p_idx[0]:p_idx[1], 0] + true_x[p_idx[0]:p_idx[1], 0])
 | |
|     for q_idx, q_err_idx in zip(q_idxs, q_err_idxs):
 | |
|       delta_quat = quat_matrix_r(nom_x[q_idx[0]:q_idx[1], 0]).T * true_x[q_idx[0]:q_idx[1], 0]
 | |
|       inv_err_function_sym[q_err_idx[0]:q_err_idx[1], 0] = sp.Matrix(2 * delta_quat[1:])
 | |
| 
 | |
|     eskf_params = [[err_function_sym, nom_x, delta_x],
 | |
|                    [inv_err_function_sym, nom_x, true_x],
 | |
|                    H_mod_sym, f_err_sym, state_err_sym]
 | |
|     #
 | |
|     # Observation functions
 | |
|     #
 | |
| 
 | |
|     # extra args
 | |
|     sat_pos_freq_sym = sp.MatrixSymbol('sat_pos', 4, 1)
 | |
|     sat_pos_vel_sym = sp.MatrixSymbol('sat_pos_vel', 6, 1)
 | |
|     # sat_los_sym = sp.MatrixSymbol('sat_los', 3, 1)
 | |
|     orb_epos_sym = sp.MatrixSymbol('orb_epos_sym', 3, 1)
 | |
| 
 | |
|     # expand extra args
 | |
|     sat_x, sat_y, sat_z, glonass_freq = sat_pos_freq_sym
 | |
|     sat_vx, sat_vy, sat_vz = sat_pos_vel_sym[3:]
 | |
|     # los_x, los_y, los_z = sat_los_sym
 | |
|     orb_x, orb_y, orb_z = orb_epos_sym
 | |
| 
 | |
|     h_pseudorange_sym = sp.Matrix([
 | |
|       sp.sqrt(
 | |
|         (x - sat_x)**2 +
 | |
|         (y - sat_y)**2 +
 | |
|         (z - sat_z)**2
 | |
|       ) + cb[0]
 | |
|     ])
 | |
| 
 | |
|     h_pseudorange_glonass_sym = sp.Matrix([
 | |
|       sp.sqrt(
 | |
|         (x - sat_x)**2 +
 | |
|         (y - sat_y)**2 +
 | |
|         (z - sat_z)**2
 | |
|       ) + cb[0] + glonass_bias[0] + glonass_freq_slope[0] * glonass_freq
 | |
|     ])
 | |
| 
 | |
|     los_vector = (sp.Matrix(sat_pos_vel_sym[0:3]) - sp.Matrix([x, y, z]))
 | |
|     los_vector = los_vector / sp.sqrt(los_vector[0]**2 + los_vector[1]**2 + los_vector[2]**2)
 | |
|     h_pseudorange_rate_sym = sp.Matrix([los_vector[0] * (sat_vx - vx) +
 | |
|                                         los_vector[1] * (sat_vy - vy) +
 | |
|                                         los_vector[2] * (sat_vz - vz) +
 | |
|                                         cd[0]])
 | |
| 
 | |
|     imu_rot = euler_rotate(*imu_angles)
 | |
|     h_gyro_sym = imu_rot * sp.Matrix([vroll + roll_bias,
 | |
|                                       vpitch + pitch_bias,
 | |
|                                       vyaw + yaw_bias])
 | |
| 
 | |
|     pos = sp.Matrix([x, y, z])
 | |
|     # add 1 for stability, prevent division by 0
 | |
|     gravity = quat_rot.T * ((EARTH_GM / ((x**2 + y**2 + z**2 + 1)**(3.0 / 2.0))) * pos)
 | |
|     h_acc_sym = imu_rot * (accel_scale[0] * (gravity + acceleration))
 | |
|     h_phone_rot_sym = sp.Matrix([vroll, vpitch, vyaw])
 | |
| 
 | |
|     speed = sp.sqrt(vx**2 + vy**2 + vz**2)
 | |
|     h_speed_sym = sp.Matrix([speed * odo_scale])
 | |
| 
 | |
|     # orb stuff
 | |
|     orb_pos_sym = sp.Matrix([orb_x - x, orb_y - y, orb_z - z])
 | |
|     orb_pos_rot_sym = quat_rot.T * orb_pos_sym
 | |
|     s = orb_pos_rot_sym[0]
 | |
|     h_orb_point_sym = sp.Matrix([(1 / s) * (orb_pos_rot_sym[1]),
 | |
|                                 (1 / s) * (orb_pos_rot_sym[2])])
 | |
| 
 | |
|     h_pos_sym = sp.Matrix([x, y, z])
 | |
|     h_imu_frame_sym = sp.Matrix(imu_angles)
 | |
| 
 | |
|     h_relative_motion = sp.Matrix(quat_rot.T * v)
 | |
| 
 | |
|     obs_eqs = [[h_speed_sym, ObservationKind.ODOMETRIC_SPEED, None],
 | |
|                [h_gyro_sym, ObservationKind.PHONE_GYRO, None],
 | |
|                [h_phone_rot_sym, ObservationKind.NO_ROT, None],
 | |
|                [h_acc_sym, ObservationKind.PHONE_ACCEL, None],
 | |
|                [h_pseudorange_sym, ObservationKind.PSEUDORANGE_GPS, sat_pos_freq_sym],
 | |
|                [h_pseudorange_glonass_sym, ObservationKind.PSEUDORANGE_GLONASS, sat_pos_freq_sym],
 | |
|                [h_pseudorange_rate_sym, ObservationKind.PSEUDORANGE_RATE_GPS, sat_pos_vel_sym],
 | |
|                [h_pseudorange_rate_sym, ObservationKind.PSEUDORANGE_RATE_GLONASS, sat_pos_vel_sym],
 | |
|                [h_pos_sym, ObservationKind.ECEF_POS, None],
 | |
|                [h_relative_motion, ObservationKind.CAMERA_ODO_TRANSLATION, None],
 | |
|                [h_phone_rot_sym, ObservationKind.CAMERA_ODO_ROTATION, None],
 | |
|                [h_imu_frame_sym, ObservationKind.IMU_FRAME, None],
 | |
|                [h_orb_point_sym, ObservationKind.ORB_POINT, orb_epos_sym]]
 | |
| 
 | |
|     # MSCKF configuration
 | |
|     if N > 0:
 | |
|       # experimentally found this is correct value for imx298 with 910 focal length
 | |
|       # this is a variable so it can change with focus, but we disregard that for now
 | |
|       focal_scale = 1.01
 | |
|       # Add observation functions for orb feature tracks
 | |
|       track_epos_sym = sp.MatrixSymbol('track_epos_sym', 3, 1)
 | |
|       track_x, track_y, track_z = track_epos_sym
 | |
|       h_track_sym = sp.Matrix(np.zeros(((1 + N) * 2, 1)))
 | |
|       track_pos_sym = sp.Matrix([track_x - x, track_y - y, track_z - z])
 | |
|       track_pos_rot_sym = quat_rot.T * track_pos_sym
 | |
|       h_track_sym[-2:, :] = sp.Matrix([focal_scale * (track_pos_rot_sym[1] / track_pos_rot_sym[0]),
 | |
|                                       focal_scale * (track_pos_rot_sym[2] / track_pos_rot_sym[0])])
 | |
| 
 | |
|       h_msckf_test_sym = sp.Matrix(np.zeros(((1 + N) * 3, 1)))
 | |
|       h_msckf_test_sym[-3:, :] = sp.Matrix([track_x - x, track_y - y, track_z - z])
 | |
| 
 | |
|       for n in range(N):
 | |
|         idx = dim_main + n * dim_augment
 | |
|         # err_idx = dim_main_err + n * dim_augment_err  # FIXME: Why is this not used?
 | |
|         x, y, z = state[idx:idx + 3]
 | |
|         q = state[idx + 3:idx + 7]
 | |
|         quat_rot = quat_rotate(*q)
 | |
|         track_pos_sym = sp.Matrix([track_x - x, track_y - y, track_z - z])
 | |
|         track_pos_rot_sym = quat_rot.T * track_pos_sym
 | |
|         h_track_sym[n * 2:n * 2 + 2, :] = sp.Matrix([focal_scale * (track_pos_rot_sym[1] / track_pos_rot_sym[0]),
 | |
|                                                      focal_scale * (track_pos_rot_sym[2] / track_pos_rot_sym[0])])
 | |
|         h_msckf_test_sym[n * 3:n * 3 + 3, :] = sp.Matrix([track_x - x, track_y - y, track_z - z])
 | |
| 
 | |
|       obs_eqs.append([h_msckf_test_sym, ObservationKind.MSCKF_TEST, track_epos_sym])
 | |
|       obs_eqs.append([h_track_sym, ObservationKind.ORB_FEATURES, track_epos_sym])
 | |
|       obs_eqs.append([h_track_sym, ObservationKind.FEATURE_TRACK_TEST, track_epos_sym])
 | |
|       msckf_params = [dim_main, dim_augment, dim_main_err, dim_augment_err, N, [ObservationKind.MSCKF_TEST, ObservationKind.ORB_FEATURES]]
 | |
|     else:
 | |
|       msckf_params = None
 | |
|     gen_code(generated_dir, name, f_sym, dt, state_sym, obs_eqs, dim_state, dim_state_err, eskf_params, msckf_params, maha_test_kinds)
 | |
| 
 | |
|   def __init__(self, generated_dir, N=4, max_tracks=3000):
 | |
|     name = f"{self.name}_{N}"
 | |
| 
 | |
|     self.obs_noise = {ObservationKind.ODOMETRIC_SPEED: np.atleast_2d(0.2**2),
 | |
|                       ObservationKind.PHONE_GYRO: np.diag([0.025**2, 0.025**2, 0.025**2]),
 | |
|                       ObservationKind.PHONE_ACCEL: np.diag([.5**2, .5**2, .5**2]),
 | |
|                       ObservationKind.CAMERA_ODO_ROTATION: np.diag([0.05**2, 0.05**2, 0.05**2]),
 | |
|                       ObservationKind.IMU_FRAME: np.diag([0.05**2, 0.05**2, 0.05**2]),
 | |
|                       ObservationKind.NO_ROT: np.diag([0.0025**2, 0.0025**2, 0.0025**2]),
 | |
|                       ObservationKind.ECEF_POS: np.diag([5**2, 5**2, 5**2])}
 | |
| 
 | |
|     # MSCKF stuff
 | |
|     self.N = N
 | |
|     self.dim_main = LocKalman.x_initial.shape[0]
 | |
|     self.dim_main_err = LocKalman.P_initial.shape[0]
 | |
|     self.dim_state = self.dim_main + self.dim_augment * self.N
 | |
|     self.dim_state_err = self.dim_main_err + self.dim_augment_err * self.N
 | |
| 
 | |
|     if self.N > 0:
 | |
|       x_initial, P_initial, Q = self.pad_augmented(self.x_initial, self.P_initial, self.Q)  # lgtm[py/mismatched-multiple-assignment] pylint: disable=unbalanced-tuple-unpacking
 | |
|       self.computer = LstSqComputer(generated_dir, N)
 | |
|       self.max_tracks = max_tracks
 | |
| 
 | |
|     # init filter
 | |
|     self.filter = EKF_sym(generated_dir, name, Q, x_initial, P_initial, self.dim_main, self.dim_main_err,
 | |
|                           N, self.dim_augment, self.dim_augment_err, self.maha_test_kinds)
 | |
| 
 | |
|   @property
 | |
|   def x(self):
 | |
|     return self.filter.state()
 | |
| 
 | |
|   @property
 | |
|   def t(self):
 | |
|     return self.filter.filter_time
 | |
| 
 | |
|   @property
 | |
|   def P(self):
 | |
|     return self.filter.covs()
 | |
| 
 | |
|   def predict(self, t):
 | |
|     return self.filter.predict(t)
 | |
| 
 | |
|   def rts_smooth(self, estimates):
 | |
|     return self.filter.rts_smooth(estimates, norm_quats=True)
 | |
| 
 | |
|   def pad_augmented(self, x, P, Q=None):
 | |
|     if x.shape[0] == self.dim_main and self.N > 0:
 | |
|       x = np.pad(x, (0, self.N * self.dim_augment), mode='constant')
 | |
|       x[self.dim_main + 3::7] = 1
 | |
|     if P.shape[0] == self.dim_main_err and self.N > 0:
 | |
|       P = np.pad(P, [(0, self.N * self.dim_augment_err), (0, self.N * self.dim_augment_err)], mode='constant')
 | |
|       P[self.dim_main_err:, self.dim_main_err:] = 10e20 * np.eye(self.dim_augment_err * self.N)
 | |
|     if Q is None:
 | |
|       return x, P
 | |
|     else:
 | |
|       Q = np.pad(Q, [(0, self.N * self.dim_augment_err), (0, self.N * self.dim_augment_err)], mode='constant')
 | |
|       return x, P, Q
 | |
| 
 | |
|   def init_state(self, state, covs_diag=None, covs=None, filter_time=None):
 | |
|     if covs_diag is not None:
 | |
|       P = np.diag(covs_diag)
 | |
|     elif covs is not None:
 | |
|       P = covs
 | |
|     else:
 | |
|       P = self.filter.covs()
 | |
|     state, P = self.pad_augmented(state, P)
 | |
|     self.filter.init_state(state, P, filter_time)
 | |
| 
 | |
|   def predict_and_observe(self, t, kind, data):
 | |
|     if len(data) > 0:
 | |
|       data = np.atleast_2d(data)
 | |
|     if kind == ObservationKind.CAMERA_ODO_TRANSLATION:
 | |
|       r = self.predict_and_update_odo_trans(data, t, kind)
 | |
|     elif kind == ObservationKind.CAMERA_ODO_ROTATION:
 | |
|       r = self.predict_and_update_odo_rot(data, t, kind)
 | |
|     elif kind == ObservationKind.PSEUDORANGE_GPS or kind == ObservationKind.PSEUDORANGE_GLONASS:
 | |
|       r = self.predict_and_update_pseudorange(data, t, kind)
 | |
|     elif kind == ObservationKind.PSEUDORANGE_RATE_GPS or kind == ObservationKind.PSEUDORANGE_RATE_GLONASS:
 | |
|       r = self.predict_and_update_pseudorange_rate(data, t, kind)
 | |
|     elif kind == ObservationKind.ORB_POINT:
 | |
|       r = self.predict_and_update_orb(data, t, kind)
 | |
|     elif kind == ObservationKind.ORB_FEATURES:
 | |
|       r = self.predict_and_update_orb_features(data, t, kind)
 | |
|     elif kind == ObservationKind.MSCKF_TEST:
 | |
|       r = self.predict_and_update_msckf_test(data, t, kind)
 | |
|     elif kind == ObservationKind.ODOMETRIC_SPEED:
 | |
|       r = self.predict_and_update_odo_speed(data, t, kind)
 | |
|     else:
 | |
|       r = self.filter.predict_and_update_batch(t, kind, data, self.get_R(kind, len(data)))
 | |
|     # Normalize quats
 | |
|     quat_norm = np.linalg.norm(self.filter.x[3:7, 0])
 | |
|     # Should not continue if the quats behave this weirdly
 | |
|     if not 0.1 < quat_norm < 10:
 | |
|       raise RuntimeError("Sir! The filter's gone all wobbly!")
 | |
|     self.filter.x[3:7, 0] = self.filter.x[3:7, 0] / quat_norm
 | |
|     for i in range(self.N):
 | |
|       d1 = self.dim_main
 | |
|       d3 = self.dim_augment
 | |
|       self.filter.x[d1 + d3 * i + 3:d1 + d3 * i + 7] /= np.linalg.norm(self.filter.x[d1 + i * d3 + 3:d1 + i * d3 + 7, 0])
 | |
|     return r
 | |
| 
 | |
|   def get_R(self, kind, n):
 | |
|     obs_noise = self.obs_noise[kind]
 | |
|     dim = obs_noise.shape[0]
 | |
|     R = np.zeros((n, dim, dim))
 | |
|     for i in range(n):
 | |
|       R[i, :, :] = obs_noise
 | |
|     return R
 | |
| 
 | |
|   def predict_and_update_pseudorange(self, meas, t, kind):
 | |
|     R = np.zeros((len(meas), 1, 1))
 | |
|     sat_pos_freq = np.zeros((len(meas), 4))
 | |
|     z = np.zeros((len(meas), 1))
 | |
|     for i, m in enumerate(meas):
 | |
|       z_i, R_i, sat_pos_freq_i = parse_pr(m)
 | |
|       sat_pos_freq[i, :] = sat_pos_freq_i
 | |
|       z[i, :] = z_i
 | |
|       R[i, :, :] = R_i
 | |
|     return self.filter.predict_and_update_batch(t, kind, z, R, sat_pos_freq)
 | |
| 
 | |
|   def predict_and_update_pseudorange_rate(self, meas, t, kind):
 | |
|     R = np.zeros((len(meas), 1, 1))
 | |
|     z = np.zeros((len(meas), 1))
 | |
|     sat_pos_vel = np.zeros((len(meas), 6))
 | |
|     for i, m in enumerate(meas):
 | |
|       z_i, R_i, sat_pos_vel_i = parse_prr(m)
 | |
|       sat_pos_vel[i] = sat_pos_vel_i
 | |
|       R[i, :, :] = R_i
 | |
|       z[i, :] = z_i
 | |
|     return self.filter.predict_and_update_batch(t, kind, z, R, sat_pos_vel)
 | |
| 
 | |
|   def predict_and_update_orb(self, orb, t, kind):
 | |
|     true_pos = orb[:, 2:]
 | |
|     z = orb[:, :2]
 | |
|     R = np.zeros((len(orb), 2, 2))
 | |
|     for i, _ in enumerate(z):
 | |
|       R[i, :, :] = np.diag([10**2, 10**2])
 | |
|     return self.filter.predict_and_update_batch(t, kind, z, R, true_pos)
 | |
| 
 | |
|   def predict_and_update_odo_speed(self, speed, t, kind):
 | |
|     z = np.array(speed)
 | |
|     R = np.zeros((len(speed), 1, 1))
 | |
|     for i, _ in enumerate(z):
 | |
|       R[i, :, :] = np.diag([0.2**2])
 | |
|     return self.filter.predict_and_update_batch(t, kind, z, R)
 | |
| 
 | |
|   def predict_and_update_odo_trans(self, trans, t, kind):
 | |
|     z = trans[:, :3]
 | |
|     R = np.zeros((len(trans), 3, 3))
 | |
|     for i, _ in enumerate(z):
 | |
|         R[i, :, :] = np.diag(trans[i, 3:]**2)
 | |
|     return self.filter.predict_and_update_batch(t, kind, z, R)
 | |
| 
 | |
|   def predict_and_update_odo_rot(self, rot, t, kind):
 | |
|     z = rot[:, :3]
 | |
|     R = np.zeros((len(rot), 3, 3))
 | |
|     for i, _ in enumerate(z):
 | |
|         R[i, :, :] = np.diag(rot[i, 3:]**2)
 | |
|     return self.filter.predict_and_update_batch(t, kind, z, R)
 | |
| 
 | |
|   def predict_and_update_orb_features(self, tracks, t, kind):
 | |
|     k = 2 * (self.N + 1)
 | |
|     R = np.zeros((len(tracks), k, k))
 | |
|     z = np.zeros((len(tracks), k))
 | |
|     ecef_pos = np.zeros((len(tracks), 3))
 | |
|     ecef_pos[:] = np.nan
 | |
|     poses = self.x[self.dim_main:].reshape((-1, 7))
 | |
|     times = tracks.reshape((len(tracks), self.N + 1, 4))[:, :, 0]
 | |
|     good_counter = 0
 | |
|     if times.any() and np.allclose(times[0, :-1], self.filter.augment_times, rtol=1e-6):
 | |
|       for i, track in enumerate(tracks):
 | |
|         img_positions = track.reshape((self.N + 1, 4))[:, 2:]
 | |
| 
 | |
|         # TODO not perfect as last pose not used
 | |
|         # img_positions = unroll_shutter(img_positions, poses, self.filter.state()[7:10], self.filter.state()[10:13], ecef_pos[i])
 | |
| 
 | |
|         ecef_pos[i] = self.computer.compute_pos(poses, img_positions[:-1])
 | |
|         z[i] = img_positions.flatten()
 | |
|         R[i, :, :] = np.diag([0.005**2] * (k))
 | |
|         if np.isfinite(ecef_pos[i][0]):
 | |
|           good_counter += 1
 | |
|           if good_counter > self.max_tracks:
 | |
|             break
 | |
|     good_idxs = np.all(np.isfinite(ecef_pos), axis=1)
 | |
|     # have to do some weird stuff here to keep
 | |
|     # to have the observations input from mesh3d
 | |
|     # consistent with the outputs of the filter
 | |
|     # Probably should be replaced, not sure how.
 | |
|     ret = self.filter.predict_and_update_batch(t, kind, z[good_idxs], R[good_idxs], ecef_pos[good_idxs], augment=True)
 | |
|     if ret is None:
 | |
|       return
 | |
| 
 | |
|     y_full = np.zeros((z.shape[0], z.shape[1] - 3))
 | |
|     if sum(good_idxs) > 0:
 | |
|         y_full[good_idxs] = np.array(ret[6])
 | |
|     ret = ret[:6] + (y_full, z, ecef_pos)
 | |
|     return ret
 | |
| 
 | |
|   def predict_and_update_msckf_test(self, test_data, t, kind):
 | |
|     assert self.N > 0
 | |
|     z = test_data
 | |
|     R = np.zeros((len(test_data), len(z[0]), len(z[0])))
 | |
|     ecef_pos = [self.x[:3]]
 | |
|     for i, _ in enumerate(z):
 | |
|       R[i, :, :] = np.diag([0.1**2] * len(z[0]))
 | |
|     ret = self.filter.predict_and_update_batch(t, kind, z, R, ecef_pos)
 | |
|     self.filter.augment()
 | |
|     return ret
 | |
| 
 | |
|   def maha_test_pseudorange(self, x, P, meas, kind, maha_thresh=.3):
 | |
|     bools = []
 | |
|     for m in meas:
 | |
|       z, R, sat_pos_freq = parse_pr(m)
 | |
|       bools.append(self.filter.maha_test(x, P, kind, z, R, extra_args=sat_pos_freq, maha_thresh=maha_thresh))
 | |
|     return np.array(bools)
 | |
| 
 | |
|   def maha_test_pseudorange_rate(self, x, P, meas, kind, maha_thresh=.999):
 | |
|     bools = []
 | |
|     for m in meas:
 | |
|       z, R, sat_pos_vel = parse_prr(m)
 | |
|       bools.append(self.filter.maha_test(x, P, kind, z, R, extra_args=sat_pos_vel, maha_thresh=maha_thresh))
 | |
|     return np.array(bools)
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|   N = int(sys.argv[1].split("_")[-1])
 | |
|   generated_dir = sys.argv[2]
 | |
|   LocKalman.generate_code(generated_dir, N=N)
 | |
| 
 |