You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
179 lines
6.7 KiB
179 lines
6.7 KiB
#!/usr/bin/env python3
|
|
import gc
|
|
import math
|
|
|
|
import json
|
|
import numpy as np
|
|
|
|
import cereal.messaging as messaging
|
|
from cereal import car
|
|
from common.params import Params, put_nonblocking
|
|
from common.realtime import set_realtime_priority, DT_MDL
|
|
from common.numpy_fast import clip
|
|
from selfdrive.locationd.models.car_kf import CarKalman, ObservationKind, States
|
|
from selfdrive.locationd.models.constants import GENERATED_DIR
|
|
from selfdrive.swaglog import cloudlog
|
|
|
|
|
|
MAX_ANGLE_OFFSET_DELTA = 20 * DT_MDL # Max 20 deg/s
|
|
|
|
class ParamsLearner:
|
|
def __init__(self, CP, steer_ratio, stiffness_factor, angle_offset):
|
|
self.kf = CarKalman(GENERATED_DIR, steer_ratio, stiffness_factor, angle_offset)
|
|
|
|
self.kf.filter.set_global("mass", CP.mass)
|
|
self.kf.filter.set_global("rotational_inertia", CP.rotationalInertia)
|
|
self.kf.filter.set_global("center_to_front", CP.centerToFront)
|
|
self.kf.filter.set_global("center_to_rear", CP.wheelbase - CP.centerToFront)
|
|
self.kf.filter.set_global("stiffness_front", CP.tireStiffnessFront)
|
|
self.kf.filter.set_global("stiffness_rear", CP.tireStiffnessRear)
|
|
|
|
self.active = False
|
|
|
|
self.speed = 0
|
|
self.steering_pressed = False
|
|
self.steering_angle = 0
|
|
|
|
self.valid = True
|
|
|
|
def handle_log(self, t, which, msg):
|
|
if which == 'liveLocationKalman':
|
|
yaw_rate = msg.angularVelocityCalibrated.value[2]
|
|
yaw_rate_std = msg.angularVelocityCalibrated.std[2]
|
|
|
|
yaw_rate_valid = msg.angularVelocityCalibrated.valid
|
|
yaw_rate_valid = yaw_rate_valid and 0 < yaw_rate_std < 10 # rad/s
|
|
yaw_rate_valid = yaw_rate_valid and abs(yaw_rate) < 1 # rad/s
|
|
|
|
if self.active:
|
|
if msg.inputsOK and msg.posenetOK and yaw_rate_valid:
|
|
self.kf.predict_and_observe(t,
|
|
ObservationKind.ROAD_FRAME_YAW_RATE,
|
|
np.array([[-yaw_rate]]),
|
|
np.array([np.atleast_2d(yaw_rate_std**2)]))
|
|
self.kf.predict_and_observe(t, ObservationKind.ANGLE_OFFSET_FAST, np.array([[0]]))
|
|
|
|
elif which == 'carState':
|
|
self.steering_angle = msg.steeringAngleDeg
|
|
self.steering_pressed = msg.steeringPressed
|
|
self.speed = msg.vEgo
|
|
|
|
in_linear_region = abs(self.steering_angle) < 45 or not self.steering_pressed
|
|
self.active = self.speed > 5 and in_linear_region
|
|
|
|
if self.active:
|
|
self.kf.predict_and_observe(t, ObservationKind.STEER_ANGLE, np.array([[math.radians(msg.steeringAngleDeg)]]))
|
|
self.kf.predict_and_observe(t, ObservationKind.ROAD_FRAME_X_SPEED, np.array([[self.speed]]))
|
|
|
|
if not self.active:
|
|
# Reset time when stopped so uncertainty doesn't grow
|
|
self.kf.filter.set_filter_time(t)
|
|
self.kf.filter.reset_rewind()
|
|
|
|
|
|
def main(sm=None, pm=None):
|
|
gc.disable()
|
|
set_realtime_priority(5)
|
|
|
|
if sm is None:
|
|
sm = messaging.SubMaster(['liveLocationKalman', 'carState'], poll=['liveLocationKalman'])
|
|
if pm is None:
|
|
pm = messaging.PubMaster(['liveParameters'])
|
|
|
|
params_reader = Params()
|
|
# wait for stats about the car to come in from controls
|
|
cloudlog.info("paramsd is waiting for CarParams")
|
|
CP = car.CarParams.from_bytes(params_reader.get("CarParams", block=True))
|
|
cloudlog.info("paramsd got CarParams")
|
|
|
|
min_sr, max_sr = 0.5 * CP.steerRatio, 2.0 * CP.steerRatio
|
|
|
|
params = params_reader.get("LiveParameters")
|
|
|
|
# Check if car model matches
|
|
if params is not None:
|
|
params = json.loads(params)
|
|
if params.get('carFingerprint', None) != CP.carFingerprint:
|
|
cloudlog.info("Parameter learner found parameters for wrong car.")
|
|
params = None
|
|
|
|
# Check if starting values are sane
|
|
if params is not None:
|
|
try:
|
|
angle_offset_sane = abs(params.get('angleOffsetAverageDeg')) < 10.0
|
|
steer_ratio_sane = min_sr <= params['steerRatio'] <= max_sr
|
|
params_sane = angle_offset_sane and steer_ratio_sane
|
|
if not params_sane:
|
|
cloudlog.info(f"Invalid starting values found {params}")
|
|
params = None
|
|
except Exception as e:
|
|
cloudlog.info(f"Error reading params {params}: {str(e)}")
|
|
params = None
|
|
|
|
# TODO: cache the params with the capnp struct
|
|
if params is None:
|
|
params = {
|
|
'carFingerprint': CP.carFingerprint,
|
|
'steerRatio': CP.steerRatio,
|
|
'stiffnessFactor': 1.0,
|
|
'angleOffsetAverageDeg': 0.0,
|
|
}
|
|
cloudlog.info("Parameter learner resetting to default values")
|
|
|
|
# When driving in wet conditions the stiffness can go down, and then be too low on the next drive
|
|
# Without a way to detect this we have to reset the stiffness every drive
|
|
params['stiffnessFactor'] = 1.0
|
|
|
|
learner = ParamsLearner(CP, params['steerRatio'], params['stiffnessFactor'], math.radians(params['angleOffsetAverageDeg']))
|
|
|
|
angle_offset_average = params['angleOffsetAverageDeg']
|
|
angle_offset = angle_offset_average
|
|
|
|
while True:
|
|
sm.update()
|
|
|
|
for which, updated in sm.updated.items():
|
|
if updated:
|
|
t = sm.logMonoTime[which] * 1e-9
|
|
learner.handle_log(t, which, sm[which])
|
|
|
|
if sm.updated['liveLocationKalman']:
|
|
x = learner.kf.x
|
|
if not all(map(math.isfinite, x)):
|
|
cloudlog.error("NaN in liveParameters estimate. Resetting to default values")
|
|
learner = ParamsLearner(CP, CP.steerRatio, 1.0, 0.0)
|
|
x = learner.kf.x
|
|
|
|
angle_offset_average = clip(math.degrees(x[States.ANGLE_OFFSET]), angle_offset_average - MAX_ANGLE_OFFSET_DELTA, angle_offset_average + MAX_ANGLE_OFFSET_DELTA)
|
|
angle_offset = clip(math.degrees(x[States.ANGLE_OFFSET] + x[States.ANGLE_OFFSET_FAST]), angle_offset - MAX_ANGLE_OFFSET_DELTA, angle_offset + MAX_ANGLE_OFFSET_DELTA)
|
|
|
|
msg = messaging.new_message('liveParameters')
|
|
msg.logMonoTime = sm.logMonoTime['carState']
|
|
|
|
msg.liveParameters.posenetValid = True
|
|
msg.liveParameters.sensorValid = True
|
|
msg.liveParameters.steerRatio = float(x[States.STEER_RATIO])
|
|
msg.liveParameters.stiffnessFactor = float(x[States.STIFFNESS])
|
|
msg.liveParameters.angleOffsetAverageDeg = angle_offset_average
|
|
msg.liveParameters.angleOffsetDeg = angle_offset
|
|
msg.liveParameters.valid = all((
|
|
abs(msg.liveParameters.angleOffsetAverageDeg) < 10.0,
|
|
abs(msg.liveParameters.angleOffsetDeg) < 10.0,
|
|
0.2 <= msg.liveParameters.stiffnessFactor <= 5.0,
|
|
min_sr <= msg.liveParameters.steerRatio <= max_sr,
|
|
))
|
|
|
|
if sm.frame % 1200 == 0: # once a minute
|
|
params = {
|
|
'carFingerprint': CP.carFingerprint,
|
|
'steerRatio': msg.liveParameters.steerRatio,
|
|
'stiffnessFactor': msg.liveParameters.stiffnessFactor,
|
|
'angleOffsetAverageDeg': msg.liveParameters.angleOffsetAverageDeg,
|
|
}
|
|
put_nonblocking("LiveParameters", json.dumps(params))
|
|
|
|
pm.send('liveParameters', msg)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|
|
|