You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
135 lines
4.3 KiB
135 lines
4.3 KiB
# tinygrad is a tensor library, and as a tensor library it has multiple parts
|
|
# 1. a "runtime". this allows buffer management, compilation, and running programs
|
|
# 2. a "Device" that uses the runtime but specifies compute in an abstract way for all
|
|
# 3. a "UOp" that fuses the compute into kernels, using memory only when needed
|
|
# 4. a "Tensor" that provides an easy to use frontend with autograd ".backward()"
|
|
|
|
|
|
print("******** first, the runtime ***********")
|
|
|
|
from tinygrad.runtime.ops_cpu import ClangJITCompiler, MallocAllocator, CPUProgram
|
|
|
|
# allocate some buffers
|
|
out = MallocAllocator.alloc(4)
|
|
a = MallocAllocator.alloc(4)
|
|
b = MallocAllocator.alloc(4)
|
|
|
|
# load in some values (little endian)
|
|
MallocAllocator._copyin(a, memoryview(bytearray([2,0,0,0])))
|
|
MallocAllocator._copyin(b, memoryview(bytearray([3,0,0,0])))
|
|
|
|
# compile a program to a binary
|
|
lib = ClangJITCompiler().compile("void add(int *out, int *a, int *b) { out[0] = a[0] + b[0]; }")
|
|
|
|
# create a runtime for the program
|
|
fxn = CPUProgram("add", lib)
|
|
|
|
# run the program
|
|
fxn(out, a, b)
|
|
|
|
# check the data out
|
|
print(val := MallocAllocator._as_buffer(out).cast("I").tolist()[0])
|
|
assert val == 5
|
|
|
|
|
|
print("******** second, the Device ***********")
|
|
|
|
DEVICE = "CPU" # NOTE: you can change this!
|
|
|
|
import struct
|
|
from tinygrad.dtype import dtypes
|
|
from tinygrad.device import Buffer, Device
|
|
from tinygrad.ops import UOp, Ops
|
|
from tinygrad.shape.shapetracker import ShapeTracker
|
|
|
|
# allocate some buffers + load in values
|
|
out = Buffer(DEVICE, 1, dtypes.int32).allocate()
|
|
a = Buffer(DEVICE, 1, dtypes.int32).allocate().copyin(memoryview(bytearray(struct.pack("I", 2))))
|
|
b = Buffer(DEVICE, 1, dtypes.int32).allocate().copyin(memoryview(bytearray(struct.pack("I", 3))))
|
|
# NOTE: a._buf is the same as the return from MallocAllocator.alloc
|
|
|
|
# describe the computation
|
|
buf_1 = UOp(Ops.DEFINE_GLOBAL, dtypes.int32.ptr(), (), 1)
|
|
buf_2 = UOp(Ops.DEFINE_GLOBAL, dtypes.int32.ptr(), (), 2)
|
|
ld_1 = UOp(Ops.LOAD, dtypes.int32, (buf_1, ShapeTracker.from_shape((1,)).to_uop()))
|
|
ld_2 = UOp(Ops.LOAD, dtypes.int32, (buf_2, ShapeTracker.from_shape((1,)).to_uop()))
|
|
alu = ld_1 + ld_2
|
|
output_buf = UOp(Ops.DEFINE_GLOBAL, dtypes.int32.ptr(), (), 0)
|
|
st_0 = UOp(Ops.STORE, dtypes.void, (output_buf, ShapeTracker.from_shape((1,)).to_uop(), alu))
|
|
s = UOp(Ops.SINK, dtypes.void, (st_0,))
|
|
|
|
# convert the computation to a "linearized" format (print the format)
|
|
from tinygrad.engine.realize import get_kernel, CompiledRunner
|
|
kernel = get_kernel(Device[DEVICE].renderer, s).linearize()
|
|
|
|
# compile a program (and print the source)
|
|
fxn = CompiledRunner(kernel.to_program())
|
|
print(fxn.p.src)
|
|
# NOTE: fxn.clprg is the CPUProgram
|
|
|
|
# run the program
|
|
fxn.exec([out, a, b])
|
|
|
|
# check the data out
|
|
assert out.as_buffer().cast('I')[0] == 5
|
|
|
|
|
|
print("******** third, the UOp ***********")
|
|
|
|
from tinygrad.engine.realize import run_schedule
|
|
from tinygrad.engine.schedule import create_schedule_with_vars
|
|
from tinygrad.engine.grouper import get_becomes_map
|
|
|
|
# allocate some values + load in values
|
|
a = UOp.new_buffer(DEVICE, 1, dtypes.int32)
|
|
b = UOp.new_buffer(DEVICE, 1, dtypes.int32)
|
|
a.buffer.allocate().copyin(memoryview(bytearray(struct.pack("I", 2))))
|
|
b.buffer.allocate().copyin(memoryview(bytearray(struct.pack("I", 3))))
|
|
|
|
# describe the computation
|
|
out = a + b
|
|
s = UOp(Ops.SINK, dtypes.void, (out,))
|
|
|
|
# group the computation into kernels
|
|
becomes_map = get_becomes_map(s)
|
|
|
|
# the compute maps to an assign
|
|
assign = becomes_map[a+b]
|
|
|
|
# the first source is the output buffer (data)
|
|
assert assign.src[0].op is Ops.BUFFER
|
|
# the second source is the kernel (compute)
|
|
assert assign.src[1].op is Ops.KERNEL
|
|
|
|
# schedule the kernel graph in a linear list
|
|
s = UOp(Ops.SINK, dtypes.void, (assign,))
|
|
sched, _, becomes_map = create_schedule_with_vars(s)
|
|
assert len(sched) == 1
|
|
|
|
# DEBUGGING: print the compute ast
|
|
print(sched[-1].ast)
|
|
# NOTE: sched[-1].ast is the same as st_0 above
|
|
|
|
# the output will be stored in a new buffer
|
|
out = becomes_map[assign]
|
|
assert out.op is Ops.BUFFER and not out.buffer.is_allocated()
|
|
print(out)
|
|
|
|
# run that schedule
|
|
run_schedule(sched)
|
|
|
|
# check the data out
|
|
assert out.is_realized and out.buffer.as_buffer().cast('I')[0] == 5
|
|
|
|
|
|
print("******** fourth, the Tensor ***********")
|
|
|
|
from tinygrad import Tensor
|
|
|
|
a = Tensor([2], dtype=dtypes.int32, device=DEVICE)
|
|
b = Tensor([3], dtype=dtypes.int32, device=DEVICE)
|
|
out = a + b
|
|
|
|
# check the data out
|
|
print(val:=out.item())
|
|
assert val == 5
|
|
|