openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

96 lines
3.0 KiB

import unittest
import numpy as np
from tinygrad import Tensor, Variable
from tinygrad.helpers import Context
class TestTensorVariable(unittest.TestCase):
def test_add_tvar(self):
vv = Variable("a", 0, 10).bind(1)
ret = (Tensor(vv) + 3).item()
assert ret == 4
def test_inner_tvar_node(self):
vv = Variable("w", 0, 10).bind(2)
ret = Tensor.from_uop(vv * 4).item()
assert ret == 8
def test_inner_tvar_mul(self):
vv = Variable("w", 0, 10).bind(2)
assert (Tensor(3) * vv).item() == 6
def test_inner_tvar_mul_node(self):
vv = Variable("w", 0, 10).bind(2)
assert (Tensor(3) * (vv * 4)).item() == 24
def test_symbolic_mean(self):
with Context(IGNORE_OOB=1):
vv = Variable("a", 1, 10).bind(2)
t = Tensor.ones(2, 2).contiguous().reshape(2, vv)
ret = t.mean().item()
assert ret == 1
def test_symbolic_mean_2d(self):
with Context(IGNORE_OOB=1):
vv = Variable("a", 1, 10).bind(2)
vv2 = Variable("b", 1, 10).bind(2)
t = Tensor.ones(2, 2).contiguous().reshape(vv2, vv)
ret = t.mean().item()
assert ret == 1
def test_symbolic_mean_2d_axis_1(self):
with Context(IGNORE_OOB=1):
vv = Variable("a", 1, 10).bind(2)
vv2 = Variable("b", 1, 10).bind(2)
t = Tensor.ones(2, 2).contiguous().reshape(vv2, vv)
ret = t.mean(axis=1).reshape(2, 1).numpy()
assert np.all(ret == 1)
def test_symbolic_mean_2d_add(self):
with Context(IGNORE_OOB=1):
add_term = Variable("c", 0, 10).bind(1)
vv = Variable("a", 1, 10).bind(1)
vv2 = Variable("b", 1, 10).bind(1)
t = Tensor.ones(2, 2).contiguous().reshape(vv2+add_term, vv+add_term)
ret = t.mean().item()
assert ret == 1
def test_symbolic_var(self):
with Context(IGNORE_OOB=1):
vv = Variable("a", 1, 10).bind(2)
t = Tensor.ones(2, 2).contiguous().reshape(2, vv)
ret = t.var().item()
assert ret == 0
def test_symbolic_pad(self):
vv = Variable("a", 1, 10).bind(2)
t = Tensor.ones(2, 2).contiguous()
t = t.pad([vv, vv, vv, vv]).mean()
ones = 4
zeros = 6+6+4+4+6+6
self.assertAlmostEqual(t.item(), ones/(ones+zeros))
def test_symbolic_arange(self):
vv = Variable("a", 1, 10)
ret = Tensor.arange(0, vv.bind(4))
self.assertListEqual(ret.reshape(4).tolist(), [0,1,2,3])
def test_symbolic_arange_sym_start(self):
vv = Variable("a", 1, 6)
ret = Tensor.arange(vv.bind(4), 7)
self.assertListEqual(ret.reshape(3).tolist(), [4,5,6])
# TODO: add vmin/vmax pattern for symbolic denominator
@unittest.expectedFailure
def test_symbolic_arange_sym_step(self):
vv = Variable("step", 1, 3)
ret = Tensor.arange(0, 10, vv.bind(2))
self.assertListEqual(ret.reshape(5).tolist(), [0,2,4,6,8])
def test_symbolic_arange_two_vars(self):
begin = Variable("b", 1, 5)
end = Variable("e", 6, 10)
ret = Tensor.arange(begin.bind(4), end.bind(7))
self.assertListEqual(ret.reshape(3).tolist(), [4,5,6])
if __name__ == '__main__':
unittest.main()