You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
109 lines
3.6 KiB
109 lines
3.6 KiB
# Kernel Creation
|
|
|
|
Tinygrad lazily builds up a graph of Tensor operations. The Tensor graph includes a mix of:
|
|
|
|
- Buffer and Assignment Ops: `BUFFER`, `BUFFER_VIEW`, `COPY`, `ASSIGN`
|
|
- Movement Ops: `RESHAPE`, `EXPAND`, `PERMUTE`, `PAD`, `SHRINK`, `FLIP`
|
|
- Compute Ops: `ADD`, `MUL`, `REDUCE_AXIS`, ...
|
|
|
|
`Tensor.kernelize` creates the kernels and buffers needed to realize the output Tensor(s).
|
|
|
|
## Kernelize flow
|
|
|
|
Let's see how a multiply add Tensor graph becomes a fused elementwise kernel.
|
|
|
|
```py
|
|
# initialize 3 input buffers on the device
|
|
a = Tensor([1]).realize()
|
|
b = Tensor([2]).realize()
|
|
c = Tensor([3]).realize()
|
|
|
|
# create the Tensor graph
|
|
mul = a*b
|
|
out = mul+c
|
|
|
|
print(mul) # <Tensor <UOp METAL (1,) int (<Ops.MUL: 48>, None)> on METAL with grad None>
|
|
print(out) # <Tensor <UOp METAL (1,) int (<Ops.ADD: 52>, None)> on METAL with grad None>
|
|
|
|
out.kernelize()
|
|
|
|
print(mul) # <Tensor <UOp METAL (1,) int (<Ops.MUL: 48>, None)> on METAL with grad None>
|
|
print(out) # <Tensor <UOp METAL (1,) int (<Ops.ASSIGN: 66>, None)> on METAL with grad None>
|
|
```
|
|
|
|
The multiply Tensor stays the same because it is fused. The output Tensor's UOp becomes a new ASSIGN UOp:
|
|
|
|
```py
|
|
print(out.lazydata)
|
|
```
|
|
|
|
The first source is the output BUFFER:
|
|
|
|
```
|
|
UOp(Ops.BUFFER, dtypes.int, arg=1, src=(
|
|
UOp(Ops.DEVICE, dtypes.void, arg='METAL', src=()),
|
|
UOp(Ops.UNIQUE, dtypes.void, arg=6, src=()),))
|
|
```
|
|
|
|
And the second source is the KERNEL and its 4 buffer edges (output_buffer, a, b, c):
|
|
|
|
```
|
|
UOp(Ops.KERNEL, dtypes.void, arg=<Kernel 12 SINK(<Ops.STORE: 45>,) (__add__, __mul__)>, src=(
|
|
UOp(Ops.BUFFER, dtypes.int, arg=1, src=(
|
|
x1:=UOp(Ops.DEVICE, dtypes.void, arg='METAL', src=()),
|
|
UOp(Ops.UNIQUE, dtypes.void, arg=6, src=()),)),
|
|
UOp(Ops.BUFFER, dtypes.int, arg=1, src=(
|
|
x1,
|
|
UOp(Ops.UNIQUE, dtypes.void, arg=1, src=()),)),
|
|
UOp(Ops.BUFFER, dtypes.int, arg=1, src=(
|
|
x1,
|
|
UOp(Ops.UNIQUE, dtypes.void, arg=3, src=()),)),
|
|
UOp(Ops.BUFFER, dtypes.int, arg=1, src=(
|
|
x1,
|
|
UOp(Ops.UNIQUE, dtypes.void, arg=5, src=()),)),))
|
|
```
|
|
|
|
KERNEL describes the compute AST, metadata and memory dependencies.
|
|
|
|
BUFFER holds a reference to the device memory where the output will be stored.
|
|
|
|
Once a Tensor is kernelized, all children will LOAD its BUFFER, instead of fusing it:
|
|
|
|
```py
|
|
child = out+2
|
|
child.kernelize()
|
|
print(child.lazydata.src[1].arg.ast)
|
|
```
|
|
|
|
```
|
|
UOp(Ops.SINK, dtypes.void, arg=None, src=(
|
|
UOp(Ops.STORE, dtypes.void, arg=None, src=(
|
|
UOp(Ops.DEFINE_GLOBAL, dtypes.int.ptr(1), arg=0, src=()),
|
|
x2:=UOp(Ops.VIEW, dtypes.void, arg=ShapeTracker(views=(View(shape=(1,), strides=(0,), offset=0, mask=None, contiguous=True),)), src=()),
|
|
UOp(Ops.ADD, dtypes.int, arg=None, src=(
|
|
UOp(Ops.LOAD, dtypes.int, arg=None, src=(
|
|
UOp(Ops.DEFINE_GLOBAL, dtypes.int.ptr(1), arg=1, src=()),
|
|
x2,)),
|
|
UOp(Ops.CONST, dtypes.int, arg=2, src=(
|
|
x2,)),)),)),))
|
|
```
|
|
|
|
`Tensor.realize` will execute the kernels and write outputs to memory:
|
|
|
|
```py
|
|
Tensor.realize(out)
|
|
print(out) # <Tensor <UOp METAL (1,) int (<Ops.BUFFER: 23>, <buf real:True device:METAL size:1 dtype:dtypes.int offset:0>)> on METAL with grad None>
|
|
print(out.item()) # 5
|
|
```
|
|
|
|
<hr />
|
|
|
|
**Summary**
|
|
|
|
- The large Tensor graph is built from a mix of data, compute and movement Ops.
|
|
|
|
- `Tensor.kernelize` splits the Tensor graph into data (BUFFER), compute (KERNEL) and links dependencies with ASSIGN.
|
|
|
|
- `Tensor.realize` executes KERNELs on device and replaces the Tensor graph with just a BUFFER.
|
|
|
|
- Kernelize can be called multiple times on a Tensor. This allows for incrementally building the kernel fusion layout of a large Tensor graph, without having to call `realize` or `schedule`.
|
|
|