openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

299 lines
12 KiB

#!/usr/bin/env python3
import os
import sys
import signal
import numpy as np
from collections import deque, defaultdict
import cereal.messaging as messaging
from cereal import car, log
from common.params import Params
from common.realtime import config_realtime_process, DT_MDL
from common.filter_simple import FirstOrderFilter
from system.swaglog import cloudlog
from selfdrive.controls.lib.vehicle_model import ACCELERATION_DUE_TO_GRAVITY
HISTORY = 5 # secs
POINTS_PER_BUCKET = 1500
MIN_POINTS_TOTAL = 4000
MIN_POINTS_TOTAL_QLOG = 600
FIT_POINTS_TOTAL = 2000
FIT_POINTS_TOTAL_QLOG = 600
MIN_VEL = 15 # m/s
FRICTION_FACTOR = 1.5 # ~85% of data coverage
FACTOR_SANITY = 0.3
FACTOR_SANITY_QLOG = 0.5
FRICTION_SANITY = 0.5
FRICTION_SANITY_QLOG = 0.8
STEER_MIN_THRESHOLD = 0.02
MIN_FILTER_DECAY = 50
MAX_FILTER_DECAY = 250
LAT_ACC_THRESHOLD = 1
STEER_BUCKET_BOUNDS = [(-0.5, -0.3), (-0.3, -0.2), (-0.2, -0.1), (-0.1, 0), (0, 0.1), (0.1, 0.2), (0.2, 0.3), (0.3, 0.5)]
MIN_BUCKET_POINTS = np.array([100, 300, 500, 500, 500, 500, 300, 100])
MIN_ENGAGE_BUFFER = 2 # secs
VERSION = 1 # bump this to invalidate old parameter caches
ALLOWED_CARS = ['toyota', 'hyundai']
def slope2rot(slope):
sin = np.sqrt(slope**2 / (slope**2 + 1))
cos = np.sqrt(1 / (slope**2 + 1))
return np.array([[cos, -sin], [sin, cos]])
class NPQueue:
def __init__(self, maxlen, rowsize):
self.maxlen = maxlen
self.arr = np.empty((0, rowsize))
def __len__(self):
return len(self.arr)
def append(self, pt):
if len(self.arr) < self.maxlen:
self.arr = np.append(self.arr, [pt], axis=0)
else:
self.arr[:-1] = self.arr[1:]
self.arr[-1] = pt
class PointBuckets:
def __init__(self, x_bounds, min_points, min_points_total):
self.x_bounds = x_bounds
self.buckets = {bounds: NPQueue(maxlen=POINTS_PER_BUCKET, rowsize=3) for bounds in x_bounds}
self.buckets_min_points = {bounds: min_point for bounds, min_point in zip(x_bounds, min_points)}
self.min_points_total = min_points_total
def bucket_lengths(self):
return [len(v) for v in self.buckets.values()]
def __len__(self):
return sum(self.bucket_lengths())
def is_valid(self):
return all(len(v) >= min_pts for v, min_pts in zip(self.buckets.values(), self.buckets_min_points.values())) and (self.__len__() >= self.min_points_total)
def add_point(self, x, y):
for bound_min, bound_max in self.x_bounds:
if (x >= bound_min) and (x < bound_max):
self.buckets[(bound_min, bound_max)].append([x, 1.0, y])
break
def get_points(self, num_points=None):
points = np.vstack([x.arr for x in self.buckets.values()])
if num_points is None:
return points
return points[np.random.choice(np.arange(len(points)), min(len(points), num_points), replace=False)]
def load_points(self, points):
for x, y in points:
self.add_point(x, y)
class TorqueEstimator:
def __init__(self, CP, decimated=False):
self.hist_len = int(HISTORY / DT_MDL)
self.lag = CP.steerActuatorDelay + .2 # from controlsd
if decimated:
self.min_bucket_points = MIN_BUCKET_POINTS / 10
self.min_points_total = MIN_POINTS_TOTAL_QLOG
self.fit_points = FIT_POINTS_TOTAL_QLOG
self.factor_sanity = FACTOR_SANITY_QLOG
self.friction_sanity = FRICTION_SANITY_QLOG
else:
self.min_bucket_points = MIN_BUCKET_POINTS
self.min_points_total = MIN_POINTS_TOTAL
self.fit_points = FIT_POINTS_TOTAL
self.factor_sanity = FACTOR_SANITY
self.friction_sanity = FRICTION_SANITY
self.offline_friction = 0.0
self.offline_latAccelFactor = 0.0
self.resets = 0.0
self.use_params = CP.carName in ALLOWED_CARS
if CP.lateralTuning.which() == 'torque':
self.offline_friction = CP.lateralTuning.torque.friction
self.offline_latAccelFactor = CP.lateralTuning.torque.latAccelFactor
self.reset()
initial_params = {
'latAccelFactor': self.offline_latAccelFactor,
'latAccelOffset': 0.0,
'frictionCoefficient': self.offline_friction,
'points': []
}
self.decay = MIN_FILTER_DECAY
self.min_lataccel_factor = (1.0 - self.factor_sanity) * self.offline_latAccelFactor
self.max_lataccel_factor = (1.0 + self.factor_sanity) * self.offline_latAccelFactor
self.min_friction = (1.0 - self.friction_sanity) * self.offline_friction
self.max_friction = (1.0 + self.friction_sanity) * self.offline_friction
# try to restore cached params
params = Params()
params_cache = params.get("LiveTorqueCarParams")
torque_cache = params.get("LiveTorqueParameters")
if params_cache is not None and torque_cache is not None:
try:
with log.Event.from_bytes(torque_cache).liveTorqueParameters as log_evt:
cache_ltp = log_evt
with car.CarParams.from_bytes(params_cache) as msg:
cache_CP = msg
if self.get_restore_key(cache_CP, cache_ltp.version) == self.get_restore_key(CP, VERSION):
if cache_ltp.liveValid:
initial_params = {
'latAccelFactor': cache_ltp.latAccelFactorFiltered,
'latAccelOffset': cache_ltp.latAccelOffsetFiltered,
'frictionCoefficient': cache_ltp.frictionCoefficientFiltered
}
initial_params['points'] = cache_ltp.points
self.decay = cache_ltp.decay
self.filtered_points.load_points(initial_params['points'])
cloudlog.info("restored torque params from cache")
except Exception:
cloudlog.exception("failed to restore cached torque params")
params.remove("LiveTorqueCarParams")
params.remove("LiveTorqueParameters")
self.filtered_params = {}
for param in initial_params:
self.filtered_params[param] = FirstOrderFilter(initial_params[param], self.decay, DT_MDL)
def get_restore_key(self, CP, version):
a, b = None, None
if CP.lateralTuning.which() == 'torque':
a = CP.lateralTuning.torque.friction
b = CP.lateralTuning.torque.latAccelFactor
return (CP.carFingerprint, CP.lateralTuning.which(), a, b, version)
def reset(self):
self.resets += 1.0
self.decay = MIN_FILTER_DECAY
self.raw_points = defaultdict(lambda: deque(maxlen=self.hist_len))
self.filtered_points = PointBuckets(x_bounds=STEER_BUCKET_BOUNDS, min_points=self.min_bucket_points, min_points_total=self.min_points_total)
def estimate_params(self):
points = self.filtered_points.get_points(self.fit_points)
# total least square solution as both x and y are noisy observations
# this is empirically the slope of the hysteresis parallelogram as opposed to the line through the diagonals
try:
_, _, v = np.linalg.svd(points, full_matrices=False)
slope, offset = -v.T[0:2, 2] / v.T[2, 2]
_, spread = np.matmul(points[:, [0, 2]], slope2rot(slope)).T
friction_coeff = np.std(spread) * FRICTION_FACTOR
except np.linalg.LinAlgError as e:
cloudlog.exception(f"Error computing live torque params: {e}")
slope = offset = friction_coeff = np.nan
return slope, offset, friction_coeff
def update_params(self, params):
self.decay = min(self.decay + DT_MDL, MAX_FILTER_DECAY)
for param, value in params.items():
self.filtered_params[param].update(value)
self.filtered_params[param].update_alpha(self.decay)
def handle_log(self, t, which, msg):
if which == "carControl":
self.raw_points["carControl_t"].append(t + self.lag)
self.raw_points["steer_torque"].append(-msg.actuatorsOutput.steer)
self.raw_points["active"].append(msg.latActive)
elif which == "carState":
self.raw_points["carState_t"].append(t + self.lag)
self.raw_points["vego"].append(msg.vEgo)
self.raw_points["steer_override"].append(msg.steeringPressed)
elif which == "liveLocationKalman":
if len(self.raw_points['steer_torque']) == self.hist_len:
yaw_rate = msg.angularVelocityCalibrated.value[2]
roll = msg.orientationNED.value[0]
active = np.interp(np.arange(t - MIN_ENGAGE_BUFFER, t, DT_MDL), self.raw_points['carControl_t'], self.raw_points['active']).astype(bool)
steer_override = np.interp(np.arange(t - MIN_ENGAGE_BUFFER, t, DT_MDL), self.raw_points['carState_t'], self.raw_points['steer_override']).astype(bool)
vego = np.interp(t, self.raw_points['carState_t'], self.raw_points['vego'])
steer = np.interp(t, self.raw_points['carControl_t'], self.raw_points['steer_torque'])
lateral_acc = (vego * yaw_rate) - (np.sin(roll) * ACCELERATION_DUE_TO_GRAVITY)
if all(active) and (not any(steer_override)) and (vego > MIN_VEL) and (abs(steer) > STEER_MIN_THRESHOLD) and (abs(lateral_acc) <= LAT_ACC_THRESHOLD):
self.filtered_points.add_point(float(steer), float(lateral_acc))
def get_msg(self, valid=True, with_points=False):
msg = messaging.new_message('liveTorqueParameters')
msg.valid = valid
liveTorqueParameters = msg.liveTorqueParameters
liveTorqueParameters.version = VERSION
liveTorqueParameters.useParams = self.use_params
if self.filtered_points.is_valid():
latAccelFactor, latAccelOffset, frictionCoeff = self.estimate_params()
liveTorqueParameters.latAccelFactorRaw = float(latAccelFactor)
liveTorqueParameters.latAccelOffsetRaw = float(latAccelOffset)
liveTorqueParameters.frictionCoefficientRaw = float(frictionCoeff)
if any([val is None or np.isnan(val) for val in [latAccelFactor, latAccelOffset, frictionCoeff]]):
cloudlog.exception("Live torque parameters are invalid.")
liveTorqueParameters.liveValid = False
self.reset()
else:
liveTorqueParameters.liveValid = True
latAccelFactor = np.clip(latAccelFactor, self.min_lataccel_factor, self.max_lataccel_factor)
frictionCoeff = np.clip(frictionCoeff, self.min_friction, self.max_friction)
self.update_params({'latAccelFactor': latAccelFactor, 'latAccelOffset': latAccelOffset, 'frictionCoefficient': frictionCoeff})
else:
liveTorqueParameters.liveValid = False
if with_points:
liveTorqueParameters.points = self.filtered_points.get_points()[:, [0, 2]].tolist()
liveTorqueParameters.latAccelFactorFiltered = float(self.filtered_params['latAccelFactor'].x)
liveTorqueParameters.latAccelOffsetFiltered = float(self.filtered_params['latAccelOffset'].x)
liveTorqueParameters.frictionCoefficientFiltered = float(self.filtered_params['frictionCoefficient'].x)
liveTorqueParameters.totalBucketPoints = len(self.filtered_points)
liveTorqueParameters.decay = self.decay
liveTorqueParameters.maxResets = self.resets
return msg
def main(sm=None, pm=None):
config_realtime_process([0, 1, 2, 3], 5)
if sm is None:
sm = messaging.SubMaster(['carControl', 'carState', 'liveLocationKalman'], poll=['liveLocationKalman'])
if pm is None:
pm = messaging.PubMaster(['liveTorqueParameters'])
params = Params()
with car.CarParams.from_bytes(params.get("CarParams", block=True)) as CP:
estimator = TorqueEstimator(CP)
estimator = TorqueEstimator(CP)
def cache_params(sig, frame):
signal.signal(sig, signal.SIG_DFL)
cloudlog.warning("caching torque params")
params = Params()
params.put("LiveTorqueCarParams", CP.as_builder().to_bytes())
msg = estimator.get_msg(with_points=True)
params.put("LiveTorqueParameters", msg.to_bytes())
sys.exit(0)
if "REPLAY" not in os.environ:
signal.signal(signal.SIGINT, cache_params)
while True:
sm.update()
if sm.all_checks():
for which in sm.updated.keys():
if sm.updated[which]:
t = sm.logMonoTime[which] * 1e-9
estimator.handle_log(t, which, sm[which])
# 4Hz driven by liveLocationKalman
if sm.frame % 5 == 0:
pm.send('liveTorqueParameters', estimator.get_msg(valid=sm.all_checks()))
if __name__ == "__main__":
main()