openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

156 lines
4.4 KiB

use half::f16;
use num_traits::{float::FloatCore, PrimInt, Unsigned};
pub fn bits<T>(word: T, hi: usize, lo: usize) -> T where T: PrimInt + Unsigned {
assert!(hi >= lo);
let width = hi - lo + 1;
(word >> lo) & ((T::one() << width) - T::one())
}
pub fn nth(val: u32, pos: usize) -> u32 {
(val >> (31 - pos as u32)) & 1
}
pub fn f16_lo(val: u32) -> f16 {
f16::from_bits((val & 0xffff) as u16)
}
pub fn f16_hi(val: u32) -> f16 {
f16::from_bits(((val >> 16) & 0xffff) as u16)
}
pub fn sign_ext(num: u64, bits: usize) -> i64 {
let mut value = num;
let is_negative = (value >> (bits - 1)) & 1 != 0;
if is_negative {
value |= !0 << bits;
}
value as i64
}
pub trait IEEEClass<T> {
fn exponent(&self) -> T;
}
impl IEEEClass<u32> for f32 {
fn exponent(&self) -> u32 {
(self.to_bits() & 0b01111111100000000000000000000000) >> 23
}
}
impl IEEEClass<u16> for f16 {
fn exponent(&self) -> u16 {
(self.to_bits() & 0b0111110000000000) >> 10
}
}
impl IEEEClass<u64> for f64 {
fn exponent(&self) -> u64 {
(self.to_bits() & 0b0111111111110000000000000000000000000000000000000000000000000000) >> 52
}
}
pub trait VOPModifier<T> {
fn negate(&self, pos: usize, modifier: usize) -> T;
fn absolute(&self, pos: usize, modifier: usize) -> T;
}
impl<T> VOPModifier<T> for T
where
T: FloatCore,
{
fn negate(&self, pos: usize, modifier: usize) -> T {
match (modifier >> pos) & 1 {
1 => -*self,
_ => *self,
}
}
fn absolute(&self, pos: usize, modifier: usize) -> T {
match (modifier >> pos) & 1 {
1 => self.abs(),
_ => *self,
}
}
}
pub fn extract_mantissa(x: f64) -> f64 {
if x.is_infinite() || x.is_nan() {
return x;
}
let bits = x.to_bits();
let mantissa_mask: u64 = 0x000FFFFFFFFFFFFF;
let bias: u64 = 1023;
let normalized_mantissa_bits = (bits & mantissa_mask) | ((bias - 1) << 52);
return f64::from_bits(normalized_mantissa_bits);
}
pub fn ldexp(x: f64, exp: i32) -> f64 {
x * 2f64.powi(exp)
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_extract_mantissa() {
assert_eq!(extract_mantissa(2.0f64), 0.5);
}
#[test]
fn test_normal_exponent() {
assert_eq!(2.5f32.exponent(), 128);
assert_eq!(1.17549435e-38f32.exponent(), 1);
assert_eq!(f32::INFINITY.exponent(), 255);
assert_eq!(f32::NEG_INFINITY.exponent(), 255);
}
#[test]
fn test_denormal_exponent() {
assert_eq!(1.0e-40f32.exponent(), 0);
assert_eq!(1.0e-42f32.exponent(), 0);
assert_eq!(1.0e-44f32.exponent(), 0);
assert_eq!((1.17549435e-38f32 / 2.0).exponent(), 0);
}
#[test]
fn test_normal_exponent_f16() {
assert_eq!(f16::from_f32(3.14f32).exponent(), 16);
assert_eq!(f16::NEG_INFINITY.exponent(), 31);
assert_eq!(f16::INFINITY.exponent(), 31);
}
#[test]
fn test_neg() {
assert_eq!(0.3_f32.negate(0, 0b001), -0.3_f32);
assert_eq!(0.3_f32.negate(1, 0b010), -0.3_f32);
assert_eq!(0.3_f32.negate(2, 0b100), -0.3_f32);
assert_eq!(0.3_f32.negate(0, 0b110), 0.3_f32);
assert_eq!(0.3_f32.negate(1, 0b010), -0.3_f32);
assert_eq!(0.0_f32.negate(0, 0b001).to_bits(), (-0.0f32).to_bits());
assert_eq!((-0.0_f32).negate(0, 0b001).to_bits(), 0);
}
#[test]
fn test_sign_ext() {
assert_eq!(sign_ext(0b000000000000000101000, 21), 40);
assert_eq!(sign_ext(0b111111111111111011000, 21), -40);
assert_eq!(sign_ext(0b000000000000000000000, 21), 0);
assert_eq!(sign_ext(0b111111111111111111111, 21), -1);
assert_eq!(sign_ext(0b111000000000000000000, 21), -262144);
assert_eq!(sign_ext(0b000111111111111111111, 21), 262143);
assert_eq!(sign_ext(7608, 13), -584);
}
}
use std::sync::LazyLock;
pub static DEBUG: LazyLock<bool> = LazyLock::new(|| std::env::var("DEBUG").map(|v| v.parse::<usize>().unwrap_or(0) >= 6).unwrap_or(false));
pub fn colored(st:&str, color:&str) -> String {
let ansi_code = match color {
"green" => format!("\x1b[{};2;39;176;139m", 38),
"gray" => format!("\x1b[{};2;169;169;169m", 38),
_ => format!("\x1b[{};2;255;255;255m", 38),
};
format!("{}{}{}", ansi_code, st, "\x1b[0m")
}
#[macro_export]
macro_rules! todo_instr {
($x:expr) => {{
println!("{:08X}", $x);
Err(1)
}};
}