openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

331 lines
12 KiB

# -*- coding: future_fstrings -*-
#
# Copyright 2019 Gianluca Frison, Dimitris Kouzoupis, Robin Verschueren,
# Andrea Zanelli, Niels van Duijkeren, Jonathan Frey, Tommaso Sartor,
# Branimir Novoselnik, Rien Quirynen, Rezart Qelibari, Dang Doan,
# Jonas Koenemann, Yutao Chen, Tobias Schöls, Jonas Schlagenhauf, Moritz Diehl
#
# This file is part of acados.
#
# The 2-Clause BSD License
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.;
#
import numpy as np
import casadi as ca
import os
from .acados_model import AcadosModel
from .utils import get_acados_path
class AcadosSimDims:
"""
Class containing the dimensions of the model to be simulated.
"""
def __init__(self):
self.__nx = None
self.__nu = None
self.__nz = 0
self.__np = 0
@property
def nx(self):
""":math:`n_x` - number of states. Type: int > 0"""
return self.__nx
@property
def nz(self):
""":math:`n_z` - number of algebraic variables. Type: int >= 0"""
return self.__nz
@property
def nu(self):
""":math:`n_u` - number of inputs. Type: int >= 0"""
return self.__nu
@property
def np(self):
""":math:`n_p` - number of parameters. Type: int >= 0"""
return self.__np
@nx.setter
def nx(self, nx):
if isinstance(nx, int) and nx > 0:
self.__nx = nx
else:
raise Exception('Invalid nx value, expected positive integer. Exiting.')
@nz.setter
def nz(self, nz):
if isinstance(nz, int) and nz > -1:
self.__nz = nz
else:
raise Exception('Invalid nz value, expected nonnegative integer. Exiting.')
@nu.setter
def nu(self, nu):
if isinstance(nu, int) and nu > -1:
self.__nu = nu
else:
raise Exception('Invalid nu value, expected nonnegative integer. Exiting.')
@np.setter
def np(self, np):
if isinstance(np, int) and np > -1:
self.__np = np
else:
raise Exception('Invalid np value, expected nonnegative integer. Exiting.')
def set(self, attr, value):
setattr(self, attr, value)
class AcadosSimOpts:
"""
class containing the solver options
"""
def __init__(self):
self.__integrator_type = 'ERK'
self.__collocation_type = 'GAUSS_LEGENDRE'
self.__Tsim = None
# ints
self.__sim_method_num_stages = 1
self.__sim_method_num_steps = 1
self.__sim_method_newton_iter = 3
# bools
self.__sens_forw = True
self.__sens_adj = False
self.__sens_algebraic = False
self.__sens_hess = False
self.__output_z = False
self.__sim_method_jac_reuse = 0
@property
def integrator_type(self):
"""Integrator type. Default: 'ERK'."""
return self.__integrator_type
@property
def num_stages(self):
"""Number of stages in the integrator. Default: 1"""
return self.__sim_method_num_stages
@property
def num_steps(self):
"""Number of steps in the integrator. Default: 1"""
return self.__sim_method_num_steps
@property
def newton_iter(self):
"""Number of Newton iterations in simulation method. Default: 3"""
return self.__sim_method_newton_iter
@property
def sens_forw(self):
"""Boolean determining if forward sensitivities are computed. Default: True"""
return self.__sens_forw
@property
def sens_adj(self):
"""Boolean determining if adjoint sensitivities are computed. Default: False"""
return self.__sens_adj
@property
def sens_algebraic(self):
"""Boolean determining if sensitivities wrt algebraic variables are computed. Default: False"""
return self.__sens_algebraic
@property
def sens_hess(self):
"""Boolean determining if hessians are computed. Default: False"""
return self.__sens_hess
@property
def output_z(self):
"""Boolean determining if values for algebraic variables (corresponding to start of simulation interval) are computed. Default: False"""
return self.__output_z
@property
def sim_method_jac_reuse(self):
"""Integer determining if jacobians are reused (0 or 1). Default: 0"""
return self.__sim_method_jac_reuse
@property
def T(self):
"""Time horizon"""
return self.__Tsim
@property
def collocation_type(self):
"""Collocation type: relevant for implicit integrators
-- string in {GAUSS_RADAU_IIA, GAUSS_LEGENDRE}
Default: GAUSS_LEGENDRE
"""
return self.__collocation_type
@integrator_type.setter
def integrator_type(self, integrator_type):
integrator_types = ('ERK', 'IRK', 'GNSF')
if integrator_type in integrator_types:
self.__integrator_type = integrator_type
else:
raise Exception('Invalid integrator_type value. Possible values are:\n\n' \
+ ',\n'.join(integrator_types) + '.\n\nYou have: ' + integrator_type + '.\n\nExiting.')
@collocation_type.setter
def collocation_type(self, collocation_type):
collocation_types = ('GAUSS_RADAU_IIA', 'GAUSS_LEGENDRE')
if collocation_type in collocation_types:
self.__collocation_type = collocation_type
else:
raise Exception('Invalid collocation_type value. Possible values are:\n\n' \
+ ',\n'.join(collocation_types) + '.\n\nYou have: ' + collocation_type + '.\n\nExiting.')
@T.setter
def T(self, T):
self.__Tsim = T
@num_stages.setter
def num_stages(self, num_stages):
if isinstance(num_stages, int):
self.__sim_method_num_stages = num_stages
else:
raise Exception('Invalid num_stages value. num_stages must be an integer.')
@num_steps.setter
def num_steps(self, num_steps):
if isinstance(num_steps, int):
self.__sim_method_num_steps = num_steps
else:
raise Exception('Invalid num_steps value. num_steps must be an integer.')
@newton_iter.setter
def newton_iter(self, newton_iter):
if isinstance(newton_iter, int):
self.__sim_method_newton_iter = newton_iter
else:
raise Exception('Invalid newton_iter value. newton_iter must be an integer.')
@sens_forw.setter
def sens_forw(self, sens_forw):
if sens_forw in (True, False):
self.__sens_forw = sens_forw
else:
raise Exception('Invalid sens_forw value. sens_forw must be a Boolean.')
@sens_adj.setter
def sens_adj(self, sens_adj):
if sens_adj in (True, False):
self.__sens_adj = sens_adj
else:
raise Exception('Invalid sens_adj value. sens_adj must be a Boolean.')
@sens_hess.setter
def sens_hess(self, sens_hess):
if sens_hess in (True, False):
self.__sens_hess = sens_hess
else:
raise Exception('Invalid sens_hess value. sens_hess must be a Boolean.')
@sens_algebraic.setter
def sens_algebraic(self, sens_algebraic):
if sens_algebraic in (True, False):
self.__sens_algebraic = sens_algebraic
else:
raise Exception('Invalid sens_algebraic value. sens_algebraic must be a Boolean.')
@output_z.setter
def output_z(self, output_z):
if output_z in (True, False):
self.__output_z = output_z
else:
raise Exception('Invalid output_z value. output_z must be a Boolean.')
@sim_method_jac_reuse.setter
def sim_method_jac_reuse(self, sim_method_jac_reuse):
if sim_method_jac_reuse in (0, 1):
self.__sim_method_jac_reuse = sim_method_jac_reuse
else:
raise Exception('Invalid sim_method_jac_reuse value. sim_method_jac_reuse must be 0 or 1.')
class AcadosSim:
"""
The class has the following properties that can be modified to formulate a specific simulation problem, see below:
:param acados_path: string with the path to acados. It is used to generate the include and lib paths.
- :py:attr:`dims` of type :py:class:`acados_template.acados_ocp.AcadosSimDims` - are automatically detected from model
- :py:attr:`model` of type :py:class:`acados_template.acados_model.AcadosModel`
- :py:attr:`solver_options` of type :py:class:`acados_template.acados_sim.AcadosSimOpts`
- :py:attr:`acados_include_path` (set automatically)
- :py:attr:`acados_lib_path` (set automatically)
- :py:attr:`parameter_values` - used to initialize the parameters (can be changed)
"""
def __init__(self, acados_path=''):
if acados_path == '':
acados_path = get_acados_path()
self.dims = AcadosSimDims()
"""Dimension definitions, automatically detected from :py:attr:`model`. Type :py:class:`acados_template.acados_sim.AcadosSimDims`"""
self.model = AcadosModel()
"""Model definitions, type :py:class:`acados_template.acados_model.AcadosModel`"""
self.solver_options = AcadosSimOpts()
"""Solver Options, type :py:class:`acados_template.acados_sim.AcadosSimOpts`"""
self.acados_include_path = os.path.join(acados_path, 'include').replace(os.sep, '/') # the replace part is important on Windows for CMake
"""Path to acados include directory (set automatically), type: `string`"""
self.acados_lib_path = os.path.join(acados_path, 'lib').replace(os.sep, '/') # the replace part is important on Windows for CMake
"""Path to where acados library is located (set automatically), type: `string`"""
self.code_export_directory = 'c_generated_code'
"""Path to where code will be exported. Default: `c_generated_code`."""
self.cython_include_dirs = ''
self.__parameter_values = np.array([])
@property
def parameter_values(self):
""":math:`p` - initial values for parameter - can be updated"""
return self.__parameter_values
@parameter_values.setter
def parameter_values(self, parameter_values):
if isinstance(parameter_values, np.ndarray):
self.__parameter_values = parameter_values
else:
raise Exception('Invalid parameter_values value. ' +
f'Expected numpy array, got {type(parameter_values)}.')
def set(self, attr, value):
# tokenize string
tokens = attr.split('_', 1)
if len(tokens) > 1:
setter_to_call = getattr(getattr(self, tokens[0]), 'set')
else:
setter_to_call = getattr(self, 'set')
setter_to_call(tokens[1], value)
return