openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

232 lines
7.9 KiB

#!/usr/bin/env python3
import os
import time
import cereal.messaging as messaging
from cereal import car, log
from panda import ALTERNATIVE_EXPERIENCE
from openpilot.common.params import Params
from openpilot.common.realtime import config_realtime_process, Priority, Ratekeeper, DT_CTRL
from openpilot.common.swaglog import cloudlog
from openpilot.selfdrive.boardd.boardd import can_list_to_can_capnp
from openpilot.selfdrive.car.car_helpers import get_car, get_one_can
from openpilot.selfdrive.car.interfaces import CarInterfaceBase
from openpilot.selfdrive.controls.lib.events import Events, ET
REPLAY = "REPLAY" in os.environ
State = log.ControlsState.OpenpilotState
EventName = car.CarEvent.EventName
class Car:
CI: CarInterfaceBase
def __init__(self, CI=None):
self.POLL = False
self.can_sock = messaging.sub_sock('can', timeout=20)
self.sm = messaging.SubMaster(['pandaStates', 'carControl', 'controlsState'],
poll='carControl' if self.POLL else None)
self.pm = messaging.PubMaster(['sendcan', 'carState', 'carParams', 'carOutput'])
self.can_rcv_timeout_counter = 0 # consecutive timeout count
self.can_rcv_cum_timeout_counter = 0 # cumulative timeout count
self.CC_prev = car.CarControl.new_message()
self.CS_prev = car.CarState.new_message()
self.controlsState_prev = car.CarState.new_message()
self.last_actuators_output = car.CarControl.Actuators.new_message()
self.params = Params()
if CI is None:
# wait for one pandaState and one CAN packet
print("Waiting for CAN messages...")
get_one_can(self.can_sock)
num_pandas = len(messaging.recv_one_retry(self.sm.sock['pandaStates']).pandaStates)
experimental_long_allowed = self.params.get_bool("ExperimentalLongitudinalEnabled")
self.CI, self.CP = get_car(self.can_sock, self.pm.sock['sendcan'], experimental_long_allowed, num_pandas)
else:
self.CI, self.CP = CI, CI.CP
# read params
self.is_metric = self.params.get_bool("IsMetric")
# set alternative experiences from parameters
self.disengage_on_accelerator = self.params.get_bool("DisengageOnAccelerator")
self.CP.alternativeExperience = 0
if not self.disengage_on_accelerator:
self.CP.alternativeExperience |= ALTERNATIVE_EXPERIENCE.DISABLE_DISENGAGE_ON_GAS
openpilot_enabled_toggle = self.params.get_bool("OpenpilotEnabledToggle")
controller_available = self.CI.CC is not None and openpilot_enabled_toggle and not self.CP.dashcamOnly
self.CP.passive = not controller_available or self.CP.dashcamOnly
if self.CP.passive:
safety_config = car.CarParams.SafetyConfig.new_message()
safety_config.safetyModel = car.CarParams.SafetyModel.noOutput
self.CP.safetyConfigs = [safety_config]
# Write previous route's CarParams
prev_cp = self.params.get("CarParamsPersistent")
if prev_cp is not None:
self.params.put("CarParamsPrevRoute", prev_cp)
# Write CarParams for controls and radard
cp_bytes = self.CP.to_bytes()
self.params.put("CarParams", cp_bytes)
self.params.put_nonblocking("CarParamsCache", cp_bytes)
self.params.put_nonblocking("CarParamsPersistent", cp_bytes)
self.events = Events()
self.enabled_requested = False
# card is driven by can recv, expected at 100Hz
self.rk = Ratekeeper(100, print_delay_threshold=None)
def state_update(self) -> car.CarState:
"""carState update loop, driven by can"""
# Update carState from CAN
can_strs = messaging.drain_sock_raw(self.can_sock, wait_for_one=True)
cloudlog.timestamp('Received can')
CS = self.CI.update(self.CC_prev, can_strs)
if not self.POLL:
self.sm.update(0)
can_rcv_valid = len(can_strs) > 0
# Check for CAN timeout
if not can_rcv_valid:
self.can_rcv_timeout_counter += 1
self.can_rcv_cum_timeout_counter += 1
else:
self.can_rcv_timeout_counter = 0
self.can_rcv_timeout = self.can_rcv_timeout_counter >= 5
if can_rcv_valid and REPLAY:
self.can_log_mono_time = messaging.log_from_bytes(can_strs[0]).logMonoTime
if self.sm['controlsState'].initialized and not self.controlsState_prev.initialized:
self.CI.init(self.CP, self.can_sock, self.pm.sock['sendcan'])
cloudlog.timestamp("Initialized")
return CS
def update_events(self, CS: car.CarState) -> car.CarState:
self.events.clear()
self.events.add_from_msg(CS.events)
# Disable on rising edge of accelerator or brake. Also disable on brake when speed > 0
if (CS.gasPressed and not self.CS_prev.gasPressed and self.disengage_on_accelerator) or \
(CS.brakePressed and (not self.CS_prev.brakePressed or not CS.standstill)) or \
(CS.regenBraking and (not self.CS_prev.regenBraking or not CS.standstill)):
self.events.add(EventName.pedalPressed)
CS.events = self.events.to_msg()
def state_transition(self, CS: car.CarState):
# card maintains its own requested state to ensure controlsd doesn't miss any enable/disable events
if self.events.contains(ET.ENABLE):
if not self.events.contains(ET.NO_ENTRY):
self.enabled_requested = True
else:
if self.events.contains(ET.USER_DISABLE) or self.events.contains(ET.IMMEDIATE_DISABLE):
self.enabled_requested = False
# sync state with controlsd on non-car disable events
if not self.sm['controlsState'].enabled and self.controlsState_prev.enabled:
self.enabled_requested = False
CS.enabledRequested = self.enabled_requested
def state_publish(self, CS: car.CarState):
"""carState and carParams publish loop"""
# carParams - logged every 50 seconds (> 1 per segment)
if self.sm.frame % int(50. / DT_CTRL) == 0:
cp_send = messaging.new_message('carParams')
cp_send.valid = True
cp_send.carParams = self.CP
self.pm.send('carParams', cp_send)
# publish new carOutput
co_send = messaging.new_message('carOutput')
co_send.valid = self.sm.all_checks(['carControl'])
co_send.carOutput.actuatorsOutput = self.last_actuators_output
self.pm.send('carOutput', co_send)
# kick off controlsd step now while we actuate the latest carControl packet
cs_send = messaging.new_message('carState')
cs_send.valid = CS.canValid
cs_send.carState = CS
cs_send.carState.canRcvTimeout = self.can_rcv_timeout
cs_send.carState.canErrorCounter = self.can_rcv_cum_timeout_counter
cs_send.carState.cumLagMs = -self.rk.remaining * 1000.
self.pm.send('carState', cs_send)
cloudlog.timestamp('Sent carState')
if self.POLL:
# wait for latest carControl
self.sm.update(20)
def controls_update(self, CS: car.CarState, CC: car.CarControl):
"""control update loop, driven by carControl"""
if self.sm.all_checks(['carControl']):
# send car controls over can
now_nanos = self.can_log_mono_time if REPLAY else int(time.monotonic() * 1e9)
# TODO: CC shouldn't be builder
self.last_actuators_output, can_sends = self.CI.apply(CC.as_builder(), now_nanos)
self.pm.send('sendcan', can_list_to_can_capnp(can_sends, msgtype='sendcan', valid=CS.canValid))
self.CC_prev = CC
def step(self):
cloudlog.timestamp("Start card")
CS = self.state_update()
cloudlog.timestamp("State updated")
self.update_events(CS)
if not self.CP.passive and self.sm['controlsState'].initialized:
self.state_transition(CS)
self.state_publish(CS)
cloudlog.timestamp("State published")
controlsState = self.sm['controlsState']
if not self.CP.passive and controlsState.initialized:
self.controls_update(CS, self.sm['carControl'])
cloudlog.timestamp("Controls updated")
self.controlsState_prev = controlsState
self.CS_prev = CS.as_reader()
def card_thread(self):
while True:
self.step()
self.rk.monitor_time()
def main():
config_realtime_process(4, Priority.CTRL_HIGH)
car = Car()
car.card_thread()
if __name__ == "__main__":
main()