openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

188 lines
7.1 KiB

#include <cstring>
#include "libyuv.h"
#include "selfdrive/common/mat.h"
#include "selfdrive/common/modeldata.h"
#include "selfdrive/common/params.h"
#include "selfdrive/common/timing.h"
#include "selfdrive/hardware/hw.h"
#include "selfdrive/modeld/models/dmonitoring.h"
constexpr int MODEL_WIDTH = 704;
constexpr int MODEL_HEIGHT = 448;
template <class T>
static inline T *get_buffer(std::vector<T> &buf, const size_t size) {
if (buf.size() < size) buf.resize(size);
return buf.data();
}
void dmonitoring_init(DMonitoringModelState* s) {
s->is_rhd = Params().getBool("IsRHD");
for (int x = 0; x < std::size(s->tensor); ++x) {
s->tensor[x] = (x - 128.f) * 0.0078125f;
}
#ifdef USE_ONNX_MODEL
s->m = new ONNXModel("../../models/dmonitoring_model.onnx", &s->output[0], OUTPUT_SIZE, USE_DSP_RUNTIME);
#else
s->m = new SNPEModel("../../models/dmonitoring_model_q.dlc", &s->output[0], OUTPUT_SIZE, USE_DSP_RUNTIME);
#endif
s->m->addCalib(s->calib, CALIB_LEN);
}
static inline auto get_yuv_buf(std::vector<uint8_t> &buf, const int width, int height) {
uint8_t *y = get_buffer(buf, width * height * 3 / 2);
uint8_t *u = y + width * height;
uint8_t *v = u + (width /2) * (height / 2);
return std::make_tuple(y, u, v);
}
DMonitoringResult dmonitoring_eval_frame(DMonitoringModelState* s, void* stream_buf, int width, int height, float *calib) {
uint8_t *raw_y = (uint8_t *) stream_buf;
uint8_t *raw_u = raw_y + (width * height);
uint8_t *raw_v = raw_u + ((width / 2) * (height / 2));
int resized_width = MODEL_WIDTH;
int resized_height = MODEL_HEIGHT;
auto [resized_y, resized_u, resized_v] = get_yuv_buf(s->resized_buf, resized_width, resized_height);
libyuv::FilterMode mode = libyuv::FilterModeEnum::kFilterLinear;
if (!s->is_rhd) {
libyuv::I420Scale(raw_y, width,
raw_u, width / 2,
raw_v, width / 2,
width, height,
resized_y, resized_width,
resized_u, resized_width / 2,
resized_v, resized_width / 2,
resized_width, resized_height,
mode);
} else {
auto [mirror_y, mirror_u, mirror_v] = get_yuv_buf(s->premirror_resized_buf, resized_width, resized_height);
libyuv::I420Scale(raw_y, width,
raw_u, width / 2,
raw_v, width / 2,
width, height,
mirror_y, resized_width,
mirror_u, resized_width / 2,
mirror_v, resized_width / 2,
resized_width, resized_height,
mode);
libyuv::I420Mirror(mirror_y, resized_width,
mirror_u, resized_width / 2,
mirror_v, resized_width / 2,
resized_y, resized_width,
resized_u, resized_width / 2,
resized_v, resized_width / 2,
resized_width, resized_height);
}
int yuv_buf_len = (MODEL_WIDTH/2) * (MODEL_HEIGHT/2) * 6; // Y|u|v -> y|y|y|y|u|v
float *net_input_buf = get_buffer(s->net_input_buf, yuv_buf_len);
// one shot conversion, O(n) anyway
// yuvframe2tensor, normalize
for (int r = 0; r < MODEL_HEIGHT/2; r++) {
for (int c = 0; c < MODEL_WIDTH/2; c++) {
// Y_ul
net_input_buf[(r*MODEL_WIDTH/2) + c + (0*(MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = s->tensor[resized_y[(2*r)*resized_width + 2*c]];
// Y_dl
net_input_buf[(r*MODEL_WIDTH/2) + c + (1*(MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = s->tensor[resized_y[(2*r+1)*resized_width + 2*c]];
// Y_ur
net_input_buf[(r*MODEL_WIDTH/2) + c + (2*(MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = s->tensor[resized_y[(2*r)*resized_width + 2*c+1]];
// Y_dr
net_input_buf[(r*MODEL_WIDTH/2) + c + (3*(MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = s->tensor[resized_y[(2*r+1)*resized_width + 2*c+1]];
// U
net_input_buf[(r*MODEL_WIDTH/2) + c + (4*(MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = s->tensor[resized_u[r*resized_width/2 + c]];
// V
net_input_buf[(r*MODEL_WIDTH/2) + c + (5*(MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = s->tensor[resized_v[r*resized_width/2 + c]];
}
}
// printf("preprocess completed. %d \n", yuv_buf_len);
// FILE *dump_yuv_file = fopen("/tmp/rawdump.yuv", "wb");
// fwrite(net_input_buf, yuv_buf_len, sizeof(float), dump_yuv_file);
// fclose(dump_yuv_file);
// # testing:
// dat = np.fromfile('/tmp/rawdump.yuv', dtype=np.float32)
// dat = dat.reshape(1,6,320,512) * 128. + 128.
// frame = tensor_to_frames(dat)[0]
// frame = cv2.cvtColor(frame, cv2.COLOR_YUV2RGB_I420)
double t1 = millis_since_boot();
s->m->addImage(net_input_buf, yuv_buf_len);
for (int i = 0; i < CALIB_LEN; i++) {
s->calib[i] = calib[i];
}
s->m->execute();
double t2 = millis_since_boot();
DMonitoringResult ret = {0};
for (int i = 0; i < 3; ++i) {
ret.face_orientation[i] = s->output[i] * REG_SCALE;
ret.face_orientation_meta[i] = exp(s->output[6 + i]);
}
for (int i = 0; i < 2; ++i) {
ret.face_position[i] = s->output[3 + i] * REG_SCALE;
ret.face_position_meta[i] = exp(s->output[9 + i]);
}
for (int i = 0; i < 4; ++i) {
ret.ready_prob[i] = sigmoid(s->output[39 + i]);
}
for (int i = 0; i < 2; ++i) {
ret.not_ready_prob[i] = sigmoid(s->output[43 + i]);
}
ret.face_prob = sigmoid(s->output[12]);
ret.left_eye_prob = sigmoid(s->output[21]);
ret.right_eye_prob = sigmoid(s->output[30]);
ret.left_blink_prob = sigmoid(s->output[31]);
ret.right_blink_prob = sigmoid(s->output[32]);
ret.sg_prob = sigmoid(s->output[33]);
ret.poor_vision = sigmoid(s->output[34]);
ret.partial_face = sigmoid(s->output[35]);
ret.distracted_pose = sigmoid(s->output[36]);
ret.distracted_eyes = sigmoid(s->output[37]);
ret.occluded_prob = sigmoid(s->output[38]);
ret.dsp_execution_time = (t2 - t1) / 1000.;
return ret;
}
void dmonitoring_publish(PubMaster &pm, uint32_t frame_id, const DMonitoringResult &res, float execution_time, kj::ArrayPtr<const float> raw_pred) {
// make msg
MessageBuilder msg;
auto framed = msg.initEvent().initDriverState();
framed.setFrameId(frame_id);
framed.setModelExecutionTime(execution_time);
framed.setDspExecutionTime(res.dsp_execution_time);
framed.setFaceOrientation(res.face_orientation);
framed.setFaceOrientationStd(res.face_orientation_meta);
framed.setFacePosition(res.face_position);
framed.setFacePositionStd(res.face_position_meta);
framed.setFaceProb(res.face_prob);
framed.setLeftEyeProb(res.left_eye_prob);
framed.setRightEyeProb(res.right_eye_prob);
framed.setLeftBlinkProb(res.left_blink_prob);
framed.setRightBlinkProb(res.right_blink_prob);
framed.setSunglassesProb(res.sg_prob);
framed.setPoorVision(res.poor_vision);
framed.setPartialFace(res.partial_face);
framed.setDistractedPose(res.distracted_pose);
framed.setDistractedEyes(res.distracted_eyes);
framed.setOccludedProb(res.occluded_prob);
framed.setReadyProb(res.ready_prob);
framed.setNotReadyProb(res.not_ready_prob);
if (send_raw_pred) {
framed.setRawPredictions(raw_pred.asBytes());
}
pm.send("driverState", msg);
}
void dmonitoring_free(DMonitoringModelState* s) {
delete s->m;
}