You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
188 lines
7.1 KiB
188 lines
7.1 KiB
#include <cstring>
|
|
|
|
#include "libyuv.h"
|
|
|
|
#include "selfdrive/common/mat.h"
|
|
#include "selfdrive/common/modeldata.h"
|
|
#include "selfdrive/common/params.h"
|
|
#include "selfdrive/common/timing.h"
|
|
#include "selfdrive/hardware/hw.h"
|
|
|
|
#include "selfdrive/modeld/models/dmonitoring.h"
|
|
|
|
constexpr int MODEL_WIDTH = 704;
|
|
constexpr int MODEL_HEIGHT = 448;
|
|
|
|
template <class T>
|
|
static inline T *get_buffer(std::vector<T> &buf, const size_t size) {
|
|
if (buf.size() < size) buf.resize(size);
|
|
return buf.data();
|
|
}
|
|
|
|
void dmonitoring_init(DMonitoringModelState* s) {
|
|
s->is_rhd = Params().getBool("IsRHD");
|
|
for (int x = 0; x < std::size(s->tensor); ++x) {
|
|
s->tensor[x] = (x - 128.f) * 0.0078125f;
|
|
}
|
|
|
|
#ifdef USE_ONNX_MODEL
|
|
s->m = new ONNXModel("../../models/dmonitoring_model.onnx", &s->output[0], OUTPUT_SIZE, USE_DSP_RUNTIME);
|
|
#else
|
|
s->m = new SNPEModel("../../models/dmonitoring_model_q.dlc", &s->output[0], OUTPUT_SIZE, USE_DSP_RUNTIME);
|
|
#endif
|
|
|
|
s->m->addCalib(s->calib, CALIB_LEN);
|
|
}
|
|
|
|
static inline auto get_yuv_buf(std::vector<uint8_t> &buf, const int width, int height) {
|
|
uint8_t *y = get_buffer(buf, width * height * 3 / 2);
|
|
uint8_t *u = y + width * height;
|
|
uint8_t *v = u + (width /2) * (height / 2);
|
|
return std::make_tuple(y, u, v);
|
|
}
|
|
|
|
DMonitoringResult dmonitoring_eval_frame(DMonitoringModelState* s, void* stream_buf, int width, int height, float *calib) {
|
|
uint8_t *raw_y = (uint8_t *) stream_buf;
|
|
uint8_t *raw_u = raw_y + (width * height);
|
|
uint8_t *raw_v = raw_u + ((width / 2) * (height / 2));
|
|
|
|
int resized_width = MODEL_WIDTH;
|
|
int resized_height = MODEL_HEIGHT;
|
|
|
|
auto [resized_y, resized_u, resized_v] = get_yuv_buf(s->resized_buf, resized_width, resized_height);
|
|
libyuv::FilterMode mode = libyuv::FilterModeEnum::kFilterLinear;
|
|
if (!s->is_rhd) {
|
|
libyuv::I420Scale(raw_y, width,
|
|
raw_u, width / 2,
|
|
raw_v, width / 2,
|
|
width, height,
|
|
resized_y, resized_width,
|
|
resized_u, resized_width / 2,
|
|
resized_v, resized_width / 2,
|
|
resized_width, resized_height,
|
|
mode);
|
|
} else {
|
|
auto [mirror_y, mirror_u, mirror_v] = get_yuv_buf(s->premirror_resized_buf, resized_width, resized_height);
|
|
libyuv::I420Scale(raw_y, width,
|
|
raw_u, width / 2,
|
|
raw_v, width / 2,
|
|
width, height,
|
|
mirror_y, resized_width,
|
|
mirror_u, resized_width / 2,
|
|
mirror_v, resized_width / 2,
|
|
resized_width, resized_height,
|
|
mode);
|
|
libyuv::I420Mirror(mirror_y, resized_width,
|
|
mirror_u, resized_width / 2,
|
|
mirror_v, resized_width / 2,
|
|
resized_y, resized_width,
|
|
resized_u, resized_width / 2,
|
|
resized_v, resized_width / 2,
|
|
resized_width, resized_height);
|
|
}
|
|
|
|
int yuv_buf_len = (MODEL_WIDTH/2) * (MODEL_HEIGHT/2) * 6; // Y|u|v -> y|y|y|y|u|v
|
|
float *net_input_buf = get_buffer(s->net_input_buf, yuv_buf_len);
|
|
// one shot conversion, O(n) anyway
|
|
// yuvframe2tensor, normalize
|
|
for (int r = 0; r < MODEL_HEIGHT/2; r++) {
|
|
for (int c = 0; c < MODEL_WIDTH/2; c++) {
|
|
// Y_ul
|
|
net_input_buf[(r*MODEL_WIDTH/2) + c + (0*(MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = s->tensor[resized_y[(2*r)*resized_width + 2*c]];
|
|
// Y_dl
|
|
net_input_buf[(r*MODEL_WIDTH/2) + c + (1*(MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = s->tensor[resized_y[(2*r+1)*resized_width + 2*c]];
|
|
// Y_ur
|
|
net_input_buf[(r*MODEL_WIDTH/2) + c + (2*(MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = s->tensor[resized_y[(2*r)*resized_width + 2*c+1]];
|
|
// Y_dr
|
|
net_input_buf[(r*MODEL_WIDTH/2) + c + (3*(MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = s->tensor[resized_y[(2*r+1)*resized_width + 2*c+1]];
|
|
// U
|
|
net_input_buf[(r*MODEL_WIDTH/2) + c + (4*(MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = s->tensor[resized_u[r*resized_width/2 + c]];
|
|
// V
|
|
net_input_buf[(r*MODEL_WIDTH/2) + c + (5*(MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = s->tensor[resized_v[r*resized_width/2 + c]];
|
|
}
|
|
}
|
|
|
|
// printf("preprocess completed. %d \n", yuv_buf_len);
|
|
// FILE *dump_yuv_file = fopen("/tmp/rawdump.yuv", "wb");
|
|
// fwrite(net_input_buf, yuv_buf_len, sizeof(float), dump_yuv_file);
|
|
// fclose(dump_yuv_file);
|
|
|
|
// # testing:
|
|
// dat = np.fromfile('/tmp/rawdump.yuv', dtype=np.float32)
|
|
// dat = dat.reshape(1,6,320,512) * 128. + 128.
|
|
// frame = tensor_to_frames(dat)[0]
|
|
// frame = cv2.cvtColor(frame, cv2.COLOR_YUV2RGB_I420)
|
|
|
|
double t1 = millis_since_boot();
|
|
s->m->addImage(net_input_buf, yuv_buf_len);
|
|
for (int i = 0; i < CALIB_LEN; i++) {
|
|
s->calib[i] = calib[i];
|
|
}
|
|
s->m->execute();
|
|
double t2 = millis_since_boot();
|
|
|
|
DMonitoringResult ret = {0};
|
|
for (int i = 0; i < 3; ++i) {
|
|
ret.face_orientation[i] = s->output[i] * REG_SCALE;
|
|
ret.face_orientation_meta[i] = exp(s->output[6 + i]);
|
|
}
|
|
for (int i = 0; i < 2; ++i) {
|
|
ret.face_position[i] = s->output[3 + i] * REG_SCALE;
|
|
ret.face_position_meta[i] = exp(s->output[9 + i]);
|
|
}
|
|
for (int i = 0; i < 4; ++i) {
|
|
ret.ready_prob[i] = sigmoid(s->output[39 + i]);
|
|
}
|
|
for (int i = 0; i < 2; ++i) {
|
|
ret.not_ready_prob[i] = sigmoid(s->output[43 + i]);
|
|
}
|
|
ret.face_prob = sigmoid(s->output[12]);
|
|
ret.left_eye_prob = sigmoid(s->output[21]);
|
|
ret.right_eye_prob = sigmoid(s->output[30]);
|
|
ret.left_blink_prob = sigmoid(s->output[31]);
|
|
ret.right_blink_prob = sigmoid(s->output[32]);
|
|
ret.sg_prob = sigmoid(s->output[33]);
|
|
ret.poor_vision = sigmoid(s->output[34]);
|
|
ret.partial_face = sigmoid(s->output[35]);
|
|
ret.distracted_pose = sigmoid(s->output[36]);
|
|
ret.distracted_eyes = sigmoid(s->output[37]);
|
|
ret.occluded_prob = sigmoid(s->output[38]);
|
|
ret.dsp_execution_time = (t2 - t1) / 1000.;
|
|
return ret;
|
|
}
|
|
|
|
void dmonitoring_publish(PubMaster &pm, uint32_t frame_id, const DMonitoringResult &res, float execution_time, kj::ArrayPtr<const float> raw_pred) {
|
|
// make msg
|
|
MessageBuilder msg;
|
|
auto framed = msg.initEvent().initDriverState();
|
|
framed.setFrameId(frame_id);
|
|
framed.setModelExecutionTime(execution_time);
|
|
framed.setDspExecutionTime(res.dsp_execution_time);
|
|
|
|
framed.setFaceOrientation(res.face_orientation);
|
|
framed.setFaceOrientationStd(res.face_orientation_meta);
|
|
framed.setFacePosition(res.face_position);
|
|
framed.setFacePositionStd(res.face_position_meta);
|
|
framed.setFaceProb(res.face_prob);
|
|
framed.setLeftEyeProb(res.left_eye_prob);
|
|
framed.setRightEyeProb(res.right_eye_prob);
|
|
framed.setLeftBlinkProb(res.left_blink_prob);
|
|
framed.setRightBlinkProb(res.right_blink_prob);
|
|
framed.setSunglassesProb(res.sg_prob);
|
|
framed.setPoorVision(res.poor_vision);
|
|
framed.setPartialFace(res.partial_face);
|
|
framed.setDistractedPose(res.distracted_pose);
|
|
framed.setDistractedEyes(res.distracted_eyes);
|
|
framed.setOccludedProb(res.occluded_prob);
|
|
framed.setReadyProb(res.ready_prob);
|
|
framed.setNotReadyProb(res.not_ready_prob);
|
|
if (send_raw_pred) {
|
|
framed.setRawPredictions(raw_pred.asBytes());
|
|
}
|
|
|
|
pm.send("driverState", msg);
|
|
}
|
|
|
|
void dmonitoring_free(DMonitoringModelState* s) {
|
|
delete s->m;
|
|
}
|
|
|