You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
269 lines
13 KiB
269 lines
13 KiB
import math, functools
|
|
from typing import cast, Callable
|
|
from tinygrad import Tensor, Device, Context, GlobalCounters, dtypes
|
|
from tinygrad.uop.ops import AxisType, UOp, KernelInfo, Ops
|
|
from tinygrad.engine.realize import ExecItem, get_runner
|
|
from tinygrad.dtype import AddrSpace, PtrDType
|
|
from tinygrad.helpers import getenv, prod
|
|
|
|
from extra.thunder.tiny.tk import WARP_THREADS
|
|
from extra.thunder.tiny.tk.tiles import RT
|
|
|
|
class Group:
|
|
def __init__(self, warps:int, ker):
|
|
self.warps = warps
|
|
self.group_threads = warps * WARP_THREADS
|
|
self.threadIdx_x = ker.threadIdx_x
|
|
self.ker = ker
|
|
|
|
# helpers
|
|
@property
|
|
def laneid(self): return self.threadIdx_x % self.group_threads
|
|
@property
|
|
def warpid(self): return self.laneid // WARP_THREADS
|
|
@property
|
|
def groupid(self): return self.threadIdx_x // self.group_threads
|
|
|
|
# ops that only work on a single warp
|
|
|
|
clear_rid = 1000
|
|
def clear(self, reg:UOp, value:float=0):
|
|
assert self.warps == 1
|
|
|
|
rngs_for_shape = tuple(UOp.range(dim, Group.clear_rid + i) for i, dim in enumerate(reg.shape))
|
|
Group.clear_rid += len(reg.shape)
|
|
|
|
reg_store = reg[*rngs_for_shape].store(value).end(*rngs_for_shape)
|
|
|
|
self.ker.push_store(reg_store, reg)
|
|
return reg.after(reg_store).reshape(reg.shape)
|
|
|
|
def zero(self, reg:UOp): return self.clear(reg, 0)
|
|
def neg_inf(self, reg:UOp): return self.clear(reg, -math.inf)
|
|
|
|
copy_rid = 300
|
|
def copy(self, dst:UOp, src:UOp):
|
|
assert self.warps == 1
|
|
assert dst.shape == src.shape
|
|
|
|
rngs_for_shape = tuple(UOp.range(dim, Group.copy_rid + i) for i, dim in enumerate(dst.shape))
|
|
Group.copy_rid += len(dst.shape)
|
|
|
|
dst_store = dst[*rngs_for_shape].store(src[*rngs_for_shape].cast(dst.dtype.base)).end(*rngs_for_shape)
|
|
|
|
self.ker.push_store(dst_store, dst)
|
|
return dst.after(dst_store).reshape(dst.shape)
|
|
|
|
def mma_AB(self, c:UOp, a:UOp, b:UOp, after=True):
|
|
assert self.warps == 1
|
|
|
|
for height in self.ker.range(c.shape[-3], track=False):
|
|
for width in self.ker.range(c.shape[-2], track=False):
|
|
for inner in self.ker.range(a.shape[-2], AxisType.REDUCE, track=False):
|
|
wmma_arg = ("WMMA_8_16_16_bfloat16_float", (8, 16, 16), dtypes.bfloat16, dtypes.float, "CUDA", 32, (((4, 2), (3, 2), (8, 2)), ((4, 2), (3, 2)), ((4, 2), (3, 2))), ())
|
|
|
|
a_in = UOp.vectorize(*[a[height, inner, i] for i in range(8)])
|
|
b_in1 = UOp.vectorize(*([b[inner, width, i] for i in range(2)] + [b[inner, width, 4+i] for i in range(2)]))
|
|
c_out1 = UOp.vectorize(*[c[height, width, i] for i in range(4)])
|
|
b_in2 = UOp.vectorize(*([b[inner, width, 2+i] for i in range(2)] + [b[inner, width, 6+i] for i in range(2)]))
|
|
c_out2 = UOp.vectorize(*[c[height, width, 4+i] for i in range(4)])
|
|
|
|
out1 = UOp(Ops.WMMA, dtypes.float32.vec(4), (a_in, b_in1, c_out1), arg=wmma_arg)
|
|
out2 = UOp(Ops.WMMA, dtypes.float32.vec(4), (a_in, b_in2, c_out2), arg=wmma_arg)
|
|
c_i = [c[height, width, i].store(out1.gep(i)) for i in range(4)] + [c[height, width, 4+i].store(out2.gep(i)) for i in range(4)]
|
|
c_store = UOp.group(*c_i).end(height, width, inner)
|
|
|
|
self.ker.push_store(c_store, c)
|
|
return c.after(c_store).reshape(c.shape) if after else c_store
|
|
|
|
def mma_ABt(self, c:UOp, a:UOp, b:UOp, after=True):
|
|
assert self.warps == 1
|
|
|
|
for height in self.ker.range(c.shape[-3], track=False):
|
|
for width in self.ker.range(c.shape[-2], track=False):
|
|
for inner in self.ker.range(a.shape[-2], AxisType.REDUCE, track=False):
|
|
wmma_arg = ("WMMA_8_16_16_bfloat16_float", (8, 16, 16), dtypes.bfloat16, dtypes.float, "CUDA", 32, (((4, 2), (3, 2), (8, 2)), ((4, 2), (3, 2)), ((4, 2), (3, 2))), ())
|
|
|
|
a_in = UOp.vectorize(*[a[height, inner, i] for i in range(8)])
|
|
b_in1 = UOp.vectorize(*([b[width, inner, i] for i in range(2)] + [b[width, inner, 4+i] for i in range(2)]))
|
|
c_out1 = UOp.vectorize(*[c[height, width, i] for i in range(4)])
|
|
b_in2 = UOp.vectorize(*([b[width, inner, 2+i] for i in range(2)] + [b[width, inner, 6+i] for i in range(2)]))
|
|
c_out2 = UOp.vectorize(*[c[height, width, 4+i] for i in range(4)])
|
|
|
|
out1 = UOp(Ops.WMMA, dtypes.float32.vec(4), (a_in, b_in1, c_out1), arg=wmma_arg)
|
|
out2 = UOp(Ops.WMMA, dtypes.float32.vec(4), (a_in, b_in2, c_out2), arg=wmma_arg)
|
|
c_i = [c[height, width, i].store(out1.gep(i)) for i in range(4)] + [c[height, width, 4+i].store(out2.gep(i)) for i in range(4)]
|
|
c_store = UOp.group(*c_i).end(height, width, inner)
|
|
|
|
self.ker.push_store(c_store, c)
|
|
return c.after(c_store).reshape(c.shape) if after else c_store
|
|
|
|
map_rid = 400
|
|
def map(self, a:UOp, op:Callable[[UOp], UOp]|Callable[[UOp, tuple], UOp]):
|
|
assert self.warps == 1
|
|
|
|
rngs_for_shape = tuple(UOp.range(dim, Group.map_rid + i) for i, dim in enumerate(a.shape))
|
|
Group.map_rid += len(a.shape)
|
|
|
|
if op.__code__.co_argcount == 1:
|
|
to_store = op(a[*rngs_for_shape])
|
|
else:
|
|
to_store = op(a[*rngs_for_shape], rngs_for_shape)
|
|
|
|
a_store = a[*rngs_for_shape].store(to_store).end(*rngs_for_shape)
|
|
|
|
self.ker.push_store(a_store, a)
|
|
return a.after(a_store).reshape(a.shape)
|
|
|
|
def row_reduce(self, vec:UOp, src:UOp, op:Callable[[UOp, UOp], UOp]):
|
|
assert self.warps == 1
|
|
|
|
red_local = self.ker.alloc((self.group_threads, 2), src.dtype.base, AddrSpace.LOCAL)
|
|
red_reg = self.ker.alloc((2,), src.dtype.base, AddrSpace.REG)
|
|
|
|
for height in self.ker.range(src.shape[-3], track=False):
|
|
i = UOp.range(red_reg.size, Group.clear_rid)
|
|
Group.clear_rid += 1
|
|
red_reg = red_reg.after(height, *[tkr._rng for tkr in self.ker.range_stack])
|
|
reg_store = red_reg.flatten()[i].store(0.).end(i)
|
|
red_reg = red_reg.after(reg_store).reshape(red_reg.shape)
|
|
|
|
for outer in self.ker.range(2, track=False):
|
|
for width in self.ker.range(src.shape[-2], AxisType.REDUCE, track=False):
|
|
for inner in self.ker.range(4, AxisType.REDUCE, track=False):
|
|
elem_index = inner + 2 * (inner // 2) + outer * 2
|
|
reg_store = red_reg[outer].store(op(red_reg[outer], src[height, width, elem_index])).end(inner, width, outer)
|
|
red_reg = red_reg.after(reg_store).reshape(red_reg.shape)
|
|
|
|
# store to shared memory
|
|
for outer in self.ker.range(2, track=False):
|
|
red_local_store = red_local[self.laneid, outer].store(red_reg[outer]).end(outer)
|
|
red_local = red_local.after(red_local_store.barrier()).reshape(red_local.shape)
|
|
|
|
# reduce from shared memory
|
|
for outer in self.ker.range(2, track=False):
|
|
for inner in self.ker.range(3, AxisType.REDUCE, track=False):
|
|
offset = (self.laneid // 4) * 4 + ((self.laneid + inner + 1) % 4)
|
|
reg_store = red_reg[outer].store(op(red_reg[outer], red_local[offset, outer])).end(inner, outer)
|
|
red_reg = red_reg.after(reg_store).reshape(red_reg.shape)
|
|
|
|
# reduce with vec
|
|
for outer in self.ker.range(2, track=False):
|
|
vec_store = vec[height, 0, outer].store(op(vec[height, 0, outer], red_reg[outer])).end(outer, height)
|
|
|
|
self.ker.push_store(vec_store, vec)
|
|
return vec.after(vec_store).reshape(vec.shape)
|
|
|
|
# ops that can work across multiple warps
|
|
|
|
LOAD_INNER = 8
|
|
def load(self, dst:UOp, src:UOp, dst_idxs:tuple[UOp|int,...]=(), idxs:tuple[UOp|int,...]=(), axis:int=0, transpose:bool=False):
|
|
assert isinstance(dst.dtype, PtrDType) and isinstance(src.dtype, PtrDType)
|
|
dst_dtype, src_dtype = cast(PtrDType, dst.dtype), cast(PtrDType, src.dtype)
|
|
if dst_dtype.addrspace == AddrSpace.REG and src_dtype.addrspace == AddrSpace.LOCAL:
|
|
srcf = src.flatten(-2)
|
|
|
|
if self.warps % 4 == 0: local_warpid = (self.warpid // 4) + (self.warpid % 4) * (self.warps // 4)
|
|
else: local_warpid = self.warpid
|
|
warp_laneid = self.threadIdx_x % WARP_THREADS
|
|
|
|
for height in self.ker.range(dst.shape[-3], track=False):
|
|
for width in self.ker.range(dst.shape[-2], track=False):
|
|
for inner in self.ker.range(RT.BASE_TILE_NEPT, track=False):
|
|
if not transpose:
|
|
row = (local_warpid * dst.shape[-3] + height) * RT.TILE_ROW_DIM + (warp_laneid // 4)
|
|
col = width * RT.TILE_COL_DIM + 2 * (warp_laneid % 4)
|
|
|
|
row_offset = ((inner % 4) // 2) * 8
|
|
col_offset = (inner % 2) + (inner // 4) * 8
|
|
else:
|
|
row = (local_warpid * dst.shape[-3] + height) * RT.TILE_ROW_DIM + 2 * (warp_laneid % 4)
|
|
col = width * RT.TILE_COL_DIM + (warp_laneid // 4)
|
|
|
|
row_offset = (inner % 2) + (inner // 4) * 8
|
|
col_offset = ((inner % 4) // 2) * 8
|
|
|
|
src_i_last = (row + row_offset) * src.shape[-1] + col + col_offset
|
|
|
|
dst_store = dst[*dst_idxs, height, width, inner].store(srcf[*idxs[:-2], src_i_last])
|
|
dst_store = dst_store.end(height, width, inner)
|
|
elif dst_dtype.addrspace == AddrSpace.LOCAL and src_dtype.addrspace == AddrSpace.GLOBAL:
|
|
dstf = dst.flatten(-2)
|
|
|
|
srcf = src.flatten()
|
|
row_stride = prod(src.shape[axis+1:])
|
|
|
|
idxs = tuple(idx * dst.shape[-2] if i == axis else idx for i, idx in enumerate(idxs))
|
|
idxs = tuple(idx * dst.shape[-1] if i == 3 else idx for i, idx in enumerate(idxs))
|
|
src_i = ((idxs[0] * src.shape[-3] + idxs[1]) * src.shape[-2] + idxs[2]) * src.shape[-1] + idxs[3]
|
|
|
|
memcpy_per_row = dst.shape[-1] // Group.LOAD_INNER
|
|
total_calls = prod(dst.shape[-2:]) // (self.group_threads * Group.LOAD_INNER)
|
|
|
|
for outer in self.ker.range(total_calls, track=False):
|
|
for inner in self.ker.range(Group.LOAD_INNER, track=False):
|
|
load_idx = outer * self.group_threads + self.laneid
|
|
row = load_idx // memcpy_per_row
|
|
col = (load_idx * Group.LOAD_INNER) % dst.shape[-1]
|
|
|
|
dst_i = row * dst.shape[-1] + col + inner
|
|
src_i += row * row_stride + col + inner
|
|
|
|
dst_store = dstf[*dst_idxs, dst_i].store(srcf[src_i]).end(outer, inner)
|
|
else:
|
|
raise NotImplementedError(f"load from {src_dtype.addrspace} to {dst_dtype.addrspace} not implemented")
|
|
|
|
return dst.after(dst_store.barrier()).reshape(dst.shape)
|
|
|
|
STORE_INNER = 8
|
|
def store(self, dst:UOp, src:UOp, idxs:tuple[UOp|int,...]=(), src_idxs:tuple[UOp|int,...]=(), axis=0, after=True):
|
|
assert isinstance(dst.dtype, PtrDType) and isinstance(src.dtype, PtrDType)
|
|
dst_dtype, src_dtype = cast(PtrDType, dst.dtype), cast(PtrDType, src.dtype)
|
|
if src_dtype.addrspace == AddrSpace.REG and dst_dtype.addrspace == AddrSpace.LOCAL:
|
|
dstf = dst.flatten(-2)
|
|
|
|
if self.warps % 4 == 0: local_warpid = (self.warpid // 4) + (self.warpid % 4) * (self.warps // 4)
|
|
else: local_warpid = self.warpid
|
|
warp_laneid = self.threadIdx_x % WARP_THREADS
|
|
|
|
for height in self.ker.range(src.shape[-3], track=False):
|
|
for width in self.ker.range(src.shape[-2], track=False):
|
|
for inner in self.ker.range(RT.BASE_TILE_NEPT, track=False):
|
|
row = (local_warpid * src.shape[-3] + height) * RT.TILE_ROW_DIM + (warp_laneid // 4)
|
|
col = width * RT.TILE_COL_DIM + 2 * (warp_laneid % 4)
|
|
|
|
row_offset = ((inner % 4) // 2) * 8
|
|
col_offset = (inner % 2) + (inner // 4) * 8
|
|
|
|
dst_i_last = (row + row_offset) * dst.shape[-1] + col + col_offset
|
|
|
|
dst_store = dstf[*idxs[:-2], dst_i_last].store(src[*src_idxs, height, width, inner])
|
|
dst_store = dst_store.end(height, width, inner)
|
|
elif src_dtype.addrspace == AddrSpace.LOCAL and dst_dtype.addrspace == AddrSpace.GLOBAL:
|
|
dstf = dst.flatten()
|
|
row_stride = prod(dst.shape[axis+1:])
|
|
|
|
idxs = tuple(idx * src.shape[-2] if i == axis else idx for i, idx in enumerate(idxs))
|
|
idxs = tuple(idx * src.shape[-1] if i == 3 else idx for i, idx in enumerate(idxs))
|
|
dst_i = ((idxs[0] * dst.shape[-3] + idxs[1]) * dst.shape[-2] + idxs[2]) * dst.shape[-1] + idxs[3]
|
|
|
|
srcf = src.flatten(-2)
|
|
|
|
memcpy_per_row = src.shape[-1] // Group.STORE_INNER
|
|
total_calls = prod(src.shape[-2:]) // (self.group_threads * Group.STORE_INNER)
|
|
|
|
for outer in self.ker.range(total_calls, track=False):
|
|
for inner in self.ker.range(Group.STORE_INNER, track=False):
|
|
load_idx = outer * self.group_threads + self.laneid
|
|
row = load_idx // memcpy_per_row
|
|
col = (load_idx * Group.STORE_INNER) % src.shape[-1]
|
|
|
|
src_i = row * src.shape[-1] + col + inner
|
|
dst_i += row * row_stride + col + inner
|
|
|
|
dst_store = dstf[dst_i].store(srcf[*src_idxs, src_i]).end(outer, inner)
|
|
else:
|
|
raise NotImplementedError(f"store from {src_dtype.addrspace} to {dst_dtype.addrspace} not implemented")
|
|
|
|
self.ker.push_store(dst_store, dst)
|
|
return dst.after(dst_store.barrier()).reshape(dst.shape) if after else dst_store
|
|
|