openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

450 lines
17 KiB

import json
import os
import numpy as np
import tomllib
from abc import abstractmethod, ABC
from enum import StrEnum
from typing import Any, NamedTuple
from collections.abc import Callable
from functools import cache
from cereal import car
from openpilot.common.basedir import BASEDIR
from openpilot.common.simple_kalman import KF1D, get_kalman_gain
from openpilot.selfdrive.car import DT_CTRL, apply_hysteresis, gen_empty_fingerprint, scale_rot_inertia, scale_tire_stiffness, get_friction, STD_CARGO_KG
from openpilot.selfdrive.car.can_definitions import CanData, CanRecvCallable, CanSendCallable
from openpilot.selfdrive.car.conversions import Conversions as CV
from openpilot.selfdrive.car.helpers import clip
from openpilot.selfdrive.car.values import PLATFORMS
GearShifter = car.CarState.GearShifter
V_CRUISE_MAX = 145
MAX_CTRL_SPEED = (V_CRUISE_MAX + 4) * CV.KPH_TO_MS
ACCEL_MAX = 2.0
ACCEL_MIN = -3.5
FRICTION_THRESHOLD = 0.3
TORQUE_PARAMS_PATH = os.path.join(BASEDIR, 'selfdrive/car/torque_data/params.toml')
TORQUE_OVERRIDE_PATH = os.path.join(BASEDIR, 'selfdrive/car/torque_data/override.toml')
TORQUE_SUBSTITUTE_PATH = os.path.join(BASEDIR, 'selfdrive/car/torque_data/substitute.toml')
GEAR_SHIFTER_MAP: dict[str, car.CarState.GearShifter] = {
'P': GearShifter.park, 'PARK': GearShifter.park,
'R': GearShifter.reverse, 'REVERSE': GearShifter.reverse,
'N': GearShifter.neutral, 'NEUTRAL': GearShifter.neutral,
'E': GearShifter.eco, 'ECO': GearShifter.eco,
'T': GearShifter.manumatic, 'MANUAL': GearShifter.manumatic,
'D': GearShifter.drive, 'DRIVE': GearShifter.drive,
'S': GearShifter.sport, 'SPORT': GearShifter.sport,
'L': GearShifter.low, 'LOW': GearShifter.low,
'B': GearShifter.brake, 'BRAKE': GearShifter.brake,
}
class LatControlInputs(NamedTuple):
lateral_acceleration: float
roll_compensation: float
vego: float
aego: float
TorqueFromLateralAccelCallbackType = Callable[[LatControlInputs, car.CarParams.LateralTorqueTuning, float, float, bool, bool], float]
@cache
def get_torque_params():
with open(TORQUE_SUBSTITUTE_PATH, 'rb') as f:
sub = tomllib.load(f)
with open(TORQUE_PARAMS_PATH, 'rb') as f:
params = tomllib.load(f)
with open(TORQUE_OVERRIDE_PATH, 'rb') as f:
override = tomllib.load(f)
torque_params = {}
for candidate in (sub.keys() | params.keys() | override.keys()) - {'legend'}:
if sum([candidate in x for x in [sub, params, override]]) > 1:
raise RuntimeError(f'{candidate} is defined twice in torque config')
sub_candidate = sub.get(candidate, candidate)
if sub_candidate in override:
out = override[sub_candidate]
elif sub_candidate in params:
out = params[sub_candidate]
else:
raise NotImplementedError(f"Did not find torque params for {sub_candidate}")
torque_params[sub_candidate] = {key: out[i] for i, key in enumerate(params['legend'])}
if candidate in sub:
torque_params[candidate] = torque_params[sub_candidate]
return torque_params
# generic car and radar interfaces
class CarInterfaceBase(ABC):
def __init__(self, CP: car.CarParams, CarController, CarState):
self.CP = CP
self.frame = 0
self.v_ego_cluster_seen = False
self.CS: CarStateBase = CarState(CP)
self.cp = self.CS.get_can_parser(CP)
self.cp_cam = self.CS.get_cam_can_parser(CP)
self.cp_adas = self.CS.get_adas_can_parser(CP)
self.cp_body = self.CS.get_body_can_parser(CP)
self.cp_loopback = self.CS.get_loopback_can_parser(CP)
self.can_parsers = (self.cp, self.cp_cam, self.cp_adas, self.cp_body, self.cp_loopback)
dbc_name = "" if self.cp is None else self.cp.dbc_name
self.CC: CarControllerBase = CarController(dbc_name, CP)
def apply(self, c: car.CarControl, now_nanos: int) -> tuple[car.CarControl.Actuators, list[CanData]]:
return self.CC.update(c, self.CS, now_nanos)
@staticmethod
def get_pid_accel_limits(CP, current_speed, cruise_speed):
return ACCEL_MIN, ACCEL_MAX
@classmethod
def get_non_essential_params(cls, candidate: str) -> car.CarParams:
"""
Parameters essential to controlling the car may be incomplete or wrong without FW versions or fingerprints.
"""
return cls.get_params(candidate, gen_empty_fingerprint(), list(), False, False)
@classmethod
def get_params(cls, candidate: str, fingerprint: dict[int, dict[int, int]], car_fw: list[car.CarParams.CarFw], experimental_long: bool, docs: bool):
ret = CarInterfaceBase.get_std_params(candidate)
platform = PLATFORMS[candidate]
ret.mass = platform.config.specs.mass
ret.wheelbase = platform.config.specs.wheelbase
ret.steerRatio = platform.config.specs.steerRatio
ret.centerToFront = ret.wheelbase * platform.config.specs.centerToFrontRatio
ret.minEnableSpeed = platform.config.specs.minEnableSpeed
ret.minSteerSpeed = platform.config.specs.minSteerSpeed
ret.tireStiffnessFactor = platform.config.specs.tireStiffnessFactor
ret.flags |= int(platform.config.flags)
ret = cls._get_params(ret, candidate, fingerprint, car_fw, experimental_long, docs)
# Vehicle mass is published curb weight plus assumed payload such as a human driver; notCars have no assumed payload
if not ret.notCar:
ret.mass = ret.mass + STD_CARGO_KG
# Set params dependent on values set by the car interface
ret.rotationalInertia = scale_rot_inertia(ret.mass, ret.wheelbase)
ret.tireStiffnessFront, ret.tireStiffnessRear = scale_tire_stiffness(ret.mass, ret.wheelbase, ret.centerToFront, ret.tireStiffnessFactor)
return ret
@staticmethod
@abstractmethod
def _get_params(ret: car.CarParams, candidate, fingerprint: dict[int, dict[int, int]],
car_fw: list[car.CarParams.CarFw], experimental_long: bool, docs: bool) -> car.CarParams:
raise NotImplementedError
@staticmethod
def init(CP: car.CarParams, can_recv: CanRecvCallable, can_send: CanSendCallable):
pass
@staticmethod
def get_steer_feedforward_default(desired_angle, v_ego):
# Proportional to realigning tire momentum: lateral acceleration.
return desired_angle * (v_ego**2)
def get_steer_feedforward_function(self):
return self.get_steer_feedforward_default
def torque_from_lateral_accel_linear(self, latcontrol_inputs: LatControlInputs, torque_params: car.CarParams.LateralTorqueTuning,
lateral_accel_error: float, lateral_accel_deadzone: float, friction_compensation: bool, gravity_adjusted: bool) -> float:
# The default is a linear relationship between torque and lateral acceleration (accounting for road roll and steering friction)
friction = get_friction(lateral_accel_error, lateral_accel_deadzone, FRICTION_THRESHOLD, torque_params, friction_compensation)
return (latcontrol_inputs.lateral_acceleration / float(torque_params.latAccelFactor)) + friction
def torque_from_lateral_accel(self) -> TorqueFromLateralAccelCallbackType:
return self.torque_from_lateral_accel_linear
# returns a set of default params to avoid repetition in car specific params
@staticmethod
def get_std_params(candidate):
ret = car.CarParams.new_message()
ret.carFingerprint = candidate
# Car docs fields
ret.maxLateralAccel = get_torque_params()[candidate]['MAX_LAT_ACCEL_MEASURED']
ret.autoResumeSng = True # describes whether car can resume from a stop automatically
# standard ALC params
ret.tireStiffnessFactor = 1.0
ret.steerControlType = car.CarParams.SteerControlType.torque
ret.minSteerSpeed = 0.
ret.wheelSpeedFactor = 1.0
ret.pcmCruise = True # openpilot's state is tied to the PCM's cruise state on most cars
ret.minEnableSpeed = -1. # enable is done by stock ACC, so ignore this
ret.steerRatioRear = 0. # no rear steering, at least on the listed cars aboveA
ret.openpilotLongitudinalControl = False
ret.stopAccel = -2.0
ret.stoppingDecelRate = 0.8 # brake_travel/s while trying to stop
ret.vEgoStopping = 0.5
ret.vEgoStarting = 0.5
ret.stoppingControl = True
ret.longitudinalTuning.kf = 1.
ret.longitudinalTuning.kpBP = [0.]
ret.longitudinalTuning.kpV = [0.]
ret.longitudinalTuning.kiBP = [0.]
ret.longitudinalTuning.kiV = [0.]
# TODO estimate car specific lag, use .15s for now
ret.longitudinalActuatorDelay = 0.15
ret.steerLimitTimer = 1.0
return ret
@staticmethod
def configure_torque_tune(candidate: str, tune: car.CarParams.LateralTuning, steering_angle_deadzone_deg: float = 0.0, use_steering_angle: bool = True):
params = get_torque_params()[candidate]
tune.init('torque')
tune.torque.useSteeringAngle = use_steering_angle
tune.torque.kp = 1.0
tune.torque.kf = 1.0
tune.torque.ki = 0.1
tune.torque.friction = params['FRICTION']
tune.torque.latAccelFactor = params['LAT_ACCEL_FACTOR']
tune.torque.latAccelOffset = 0.0
tune.torque.steeringAngleDeadzoneDeg = steering_angle_deadzone_deg
def _update(self) -> car.CarState:
return self.CS.update(*self.can_parsers)
def update(self, can_packets: list[tuple[int, list[CanData]]]) -> car.CarState:
# parse can
for cp in self.can_parsers:
if cp is not None:
cp.update_strings(can_packets)
# get CarState
ret = self._update()
ret.canValid = all(cp.can_valid for cp in self.can_parsers if cp is not None)
ret.canTimeout = any(cp.bus_timeout for cp in self.can_parsers if cp is not None)
if ret.vEgoCluster == 0.0 and not self.v_ego_cluster_seen:
ret.vEgoCluster = ret.vEgo
else:
self.v_ego_cluster_seen = True
# Many cars apply hysteresis to the ego dash speed
ret.vEgoCluster = apply_hysteresis(ret.vEgoCluster, self.CS.out.vEgoCluster, self.CS.cluster_speed_hyst_gap)
if abs(ret.vEgo) < self.CS.cluster_min_speed:
ret.vEgoCluster = 0.0
if ret.cruiseState.speedCluster == 0:
ret.cruiseState.speedCluster = ret.cruiseState.speed
# copy back for next iteration
self.CS.out = ret.as_reader()
return ret
class RadarInterfaceBase(ABC):
def __init__(self, CP: car.CarParams):
self.CP = CP
self.rcp = None
self.pts: dict[int, car.RadarData.RadarPoint] = {}
self.delay = 0
self.radar_ts = CP.radarTimeStep
self.frame = 0
def update(self, can_strings):
self.frame += 1
if (self.frame % int(100 * self.radar_ts)) == 0:
return car.RadarData.new_message()
return None
class CarStateBase(ABC):
def __init__(self, CP: car.CarParams):
self.CP = CP
self.car_fingerprint = CP.carFingerprint
self.out = car.CarState.new_message()
self.cruise_buttons = 0
self.left_blinker_cnt = 0
self.right_blinker_cnt = 0
self.steering_pressed_cnt = 0
self.left_blinker_prev = False
self.right_blinker_prev = False
self.cluster_speed_hyst_gap = 0.0
self.cluster_min_speed = 0.0 # min speed before dropping to 0
Q = [[0.0, 0.0], [0.0, 100.0]]
R = 0.3
A = [[1.0, DT_CTRL], [0.0, 1.0]]
C = [[1.0, 0.0]]
x0=[[0.0], [0.0]]
K = get_kalman_gain(DT_CTRL, np.array(A), np.array(C), np.array(Q), R)
self.v_ego_kf = KF1D(x0=x0, A=A, C=C[0], K=K)
@abstractmethod
def update(self, cp, cp_cam, cp_adas, cp_body, cp_loopback) -> car.CarState:
pass
def update_speed_kf(self, v_ego_raw):
if abs(v_ego_raw - self.v_ego_kf.x[0][0]) > 2.0: # Prevent large accelerations when car starts at non zero speed
self.v_ego_kf.set_x([[v_ego_raw], [0.0]])
v_ego_x = self.v_ego_kf.update(v_ego_raw)
return float(v_ego_x[0]), float(v_ego_x[1])
def get_wheel_speeds(self, fl, fr, rl, rr, unit=CV.KPH_TO_MS):
factor = unit * self.CP.wheelSpeedFactor
wheelSpeeds = car.CarState.WheelSpeeds.new_message()
wheelSpeeds.fl = fl * factor
wheelSpeeds.fr = fr * factor
wheelSpeeds.rl = rl * factor
wheelSpeeds.rr = rr * factor
return wheelSpeeds
def update_blinker_from_lamp(self, blinker_time: int, left_blinker_lamp: bool, right_blinker_lamp: bool):
"""Update blinkers from lights. Enable output when light was seen within the last `blinker_time`
iterations"""
# TODO: Handle case when switching direction. Now both blinkers can be on at the same time
self.left_blinker_cnt = blinker_time if left_blinker_lamp else max(self.left_blinker_cnt - 1, 0)
self.right_blinker_cnt = blinker_time if right_blinker_lamp else max(self.right_blinker_cnt - 1, 0)
return self.left_blinker_cnt > 0, self.right_blinker_cnt > 0
def update_steering_pressed(self, steering_pressed, steering_pressed_min_count):
"""Applies filtering on steering pressed for noisy driver torque signals."""
self.steering_pressed_cnt += 1 if steering_pressed else -1
self.steering_pressed_cnt = clip(self.steering_pressed_cnt, 0, steering_pressed_min_count * 2)
return self.steering_pressed_cnt > steering_pressed_min_count
def update_blinker_from_stalk(self, blinker_time: int, left_blinker_stalk: bool, right_blinker_stalk: bool):
"""Update blinkers from stalk position. When stalk is seen the blinker will be on for at least blinker_time,
or until the stalk is turned off, whichever is longer. If the opposite stalk direction is seen the blinker
is forced to the other side. On a rising edge of the stalk the timeout is reset."""
if left_blinker_stalk:
self.right_blinker_cnt = 0
if not self.left_blinker_prev:
self.left_blinker_cnt = blinker_time
if right_blinker_stalk:
self.left_blinker_cnt = 0
if not self.right_blinker_prev:
self.right_blinker_cnt = blinker_time
self.left_blinker_cnt = max(self.left_blinker_cnt - 1, 0)
self.right_blinker_cnt = max(self.right_blinker_cnt - 1, 0)
self.left_blinker_prev = left_blinker_stalk
self.right_blinker_prev = right_blinker_stalk
return bool(left_blinker_stalk or self.left_blinker_cnt > 0), bool(right_blinker_stalk or self.right_blinker_cnt > 0)
@staticmethod
def parse_gear_shifter(gear: str | None) -> car.CarState.GearShifter:
if gear is None:
return GearShifter.unknown
return GEAR_SHIFTER_MAP.get(gear.upper(), GearShifter.unknown)
@staticmethod
def get_can_parser(CP):
return None
@staticmethod
def get_cam_can_parser(CP):
return None
@staticmethod
def get_adas_can_parser(CP):
return None
@staticmethod
def get_body_can_parser(CP):
return None
@staticmethod
def get_loopback_can_parser(CP):
return None
class CarControllerBase(ABC):
def __init__(self, dbc_name: str, CP: car.CarParams):
self.CP = CP
self.frame = 0
@abstractmethod
def update(self, CC: car.CarControl, CS: CarStateBase, now_nanos: int) -> tuple[car.CarControl.Actuators, list[CanData]]:
pass
INTERFACE_ATTR_FILE = {
"FINGERPRINTS": "fingerprints",
"FW_VERSIONS": "fingerprints",
}
# interface-specific helpers
def get_interface_attr(attr: str, combine_brands: bool = False, ignore_none: bool = False) -> dict[str | StrEnum, Any]:
# read all the folders in selfdrive/car and return a dict where:
# - keys are all the car models or brand names
# - values are attr values from all car folders
result = {}
for car_folder in sorted([x[0] for x in os.walk(BASEDIR + '/selfdrive/car')]):
try:
brand_name = car_folder.split('/')[-1]
brand_values = __import__(f'openpilot.selfdrive.car.{brand_name}.{INTERFACE_ATTR_FILE.get(attr, "values")}', fromlist=[attr])
if hasattr(brand_values, attr) or not ignore_none:
attr_data = getattr(brand_values, attr, None)
else:
continue
if combine_brands:
if isinstance(attr_data, dict):
for f, v in attr_data.items():
result[f] = v
else:
result[brand_name] = attr_data
except (ImportError, OSError):
pass
return result
class NanoFFModel:
def __init__(self, weights_loc: str, platform: str):
self.weights_loc = weights_loc
self.platform = platform
self.load_weights(platform)
def load_weights(self, platform: str):
with open(self.weights_loc) as fob:
self.weights = {k: np.array(v) for k, v in json.load(fob)[platform].items()}
def relu(self, x: np.ndarray):
return np.maximum(0.0, x)
def forward(self, x: np.ndarray):
assert x.ndim == 1
x = (x - self.weights['input_norm_mat'][:, 0]) / (self.weights['input_norm_mat'][:, 1] - self.weights['input_norm_mat'][:, 0])
x = self.relu(np.dot(x, self.weights['w_1']) + self.weights['b_1'])
x = self.relu(np.dot(x, self.weights['w_2']) + self.weights['b_2'])
x = self.relu(np.dot(x, self.weights['w_3']) + self.weights['b_3'])
x = np.dot(x, self.weights['w_4']) + self.weights['b_4']
return x
def predict(self, x: list[float], do_sample: bool = False):
x = self.forward(np.array(x))
if do_sample:
pred = np.random.laplace(x[0], np.exp(x[1]) / self.weights['temperature'])
else:
pred = x[0]
pred = pred * (self.weights['output_norm_mat'][1] - self.weights['output_norm_mat'][0]) + self.weights['output_norm_mat'][0]
return pred