openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

95 lines
3.8 KiB

#include "system/camerad/sensors/sensor.h"
namespace {
const float sensor_analog_gains_OX03C10[] = {
1.0, 1.0625, 1.125, 1.1875, 1.25, 1.3125, 1.375, 1.4375, 1.5, 1.5625, 1.6875,
1.8125, 1.9375, 2.0, 2.125, 2.25, 2.375, 2.5, 2.625, 2.75, 2.875, 3.0,
3.125, 3.375, 3.625, 3.875, 4.0, 4.25, 4.5, 4.75, 5.0, 5.25, 5.5,
5.75, 6.0, 6.25, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0,
10.5, 11.0, 11.5, 12.0, 12.5, 13.0, 13.5, 14.0, 14.5, 15.0, 15.5};
const uint32_t ox03c10_analog_gains_reg[] = {
0x100, 0x110, 0x120, 0x130, 0x140, 0x150, 0x160, 0x170, 0x180, 0x190, 0x1B0,
0x1D0, 0x1F0, 0x200, 0x220, 0x240, 0x260, 0x280, 0x2A0, 0x2C0, 0x2E0, 0x300,
0x320, 0x360, 0x3A0, 0x3E0, 0x400, 0x440, 0x480, 0x4C0, 0x500, 0x540, 0x580,
0x5C0, 0x600, 0x640, 0x680, 0x700, 0x780, 0x800, 0x880, 0x900, 0x980, 0xA00,
0xA80, 0xB00, 0xB80, 0xC00, 0xC80, 0xD00, 0xD80, 0xE00, 0xE80, 0xF00, 0xF80};
const uint32_t VS_TIME_MIN_OX03C10 = 1;
const uint32_t VS_TIME_MAX_OX03C10 = 34; // vs < 35
} // namespace
OX03C10::OX03C10() {
image_sensor = cereal::FrameData::ImageSensor::OX03C10;
pixel_size_mm = 0.003;
data_word = false;
frame_width = 1928;
frame_height = 1208;
frame_stride = (frame_width * 12 / 8) + 4;
extra_height = 16; // top 2 + bot 14
frame_offset = 2;
start_reg_array.assign(std::begin(start_reg_array_ox03c10), std::end(start_reg_array_ox03c10));
init_reg_array.assign(std::begin(init_array_ox03c10), std::end(init_array_ox03c10));
probe_reg_addr = 0x300a;
probe_expected_data = 0x5803;
mipi_format = CAM_FORMAT_MIPI_RAW_12;
frame_data_type = 0x2c; // one is 0x2a, two are 0x2b
mclk_frequency = 24000000; //Hz
dc_gain_factor = 7.32;
dc_gain_min_weight = 1; // always on is fine
dc_gain_max_weight = 1;
dc_gain_on_grey = 0.9;
dc_gain_off_grey = 1.0;
exposure_time_min = 2; // 1x
exposure_time_max = 2016;
analog_gain_min_idx = 0x0;
analog_gain_rec_idx = 0x0; // 1x
analog_gain_max_idx = 0x36;
analog_gain_cost_delta = -1;
analog_gain_cost_low = 0.4;
analog_gain_cost_high = 6.4;
for (int i = 0; i <= analog_gain_max_idx; i++) {
sensor_analog_gains[i] = sensor_analog_gains_OX03C10[i];
}
min_ev = (exposure_time_min + VS_TIME_MIN_OX03C10) * sensor_analog_gains[analog_gain_min_idx];
max_ev = exposure_time_max * dc_gain_factor * sensor_analog_gains[analog_gain_max_idx];
target_grey_factor = 0.01;
}
std::vector<i2c_random_wr_payload> OX03C10::getExposureRegisters(int exposure_time, int new_exp_g, bool dc_gain_enabled) const {
// t_HCG&t_LCG + t_VS on LPD, t_SPD on SPD
uint32_t hcg_time = exposure_time;
uint32_t lcg_time = hcg_time;
uint32_t spd_time = std::min(std::max((uint32_t)exposure_time, (exposure_time_max + VS_TIME_MAX_OX03C10) / 3), exposure_time_max + VS_TIME_MAX_OX03C10);
uint32_t vs_time = std::min(std::max((uint32_t)exposure_time / 40, VS_TIME_MIN_OX03C10), VS_TIME_MAX_OX03C10);
uint32_t real_gain = ox03c10_analog_gains_reg[new_exp_g];
return {
{0x3501, hcg_time>>8}, {0x3502, hcg_time&0xFF},
{0x3581, lcg_time>>8}, {0x3582, lcg_time&0xFF},
{0x3541, spd_time>>8}, {0x3542, spd_time&0xFF},
{0x35c2, vs_time&0xFF},
{0x3508, real_gain>>8}, {0x3509, real_gain&0xFF},
};
}
int OX03C10::getSlaveAddress(int port) const {
assert(port >= 0 && port <= 2);
return (int[]){0x6C, 0x20, 0x6C}[port];
}
float OX03C10::getExposureScore(float desired_ev, int exp_t, int exp_g_idx, float exp_gain, int gain_idx) const {
float score = std::abs(desired_ev - (exp_t * exp_gain));
float m = exp_g_idx > analog_gain_rec_idx ? analog_gain_cost_high : analog_gain_cost_low;
score += std::abs(exp_g_idx - (int)analog_gain_rec_idx) * m;
score += ((1 - analog_gain_cost_delta) +
analog_gain_cost_delta * (exp_g_idx - analog_gain_min_idx) / (analog_gain_max_idx - analog_gain_min_idx)) *
std::abs(exp_g_idx - gain_idx) * 5.0;
return score;
}