You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							316 lines
						
					
					
						
							10 KiB
						
					
					
				
			
		
		
	
	
							316 lines
						
					
					
						
							10 KiB
						
					
					
				| from collections import namedtuple
 | |
| from typing import Any, Dict, Tuple
 | |
| 
 | |
| import matplotlib
 | |
| import matplotlib.pyplot as plt
 | |
| import numpy as np
 | |
| import pygame  # pylint: disable=import-error
 | |
| 
 | |
| from selfdrive.config import RADAR_TO_CAMERA
 | |
| from selfdrive.config import UIParams as UP
 | |
| from selfdrive.controls.lib.lane_planner import (compute_path_pinv,
 | |
|                                                  model_polyfit)
 | |
| from tools.lib.lazy_property import lazy_property
 | |
| 
 | |
| RED = (255, 0, 0)
 | |
| GREEN = (0, 255, 0)
 | |
| BLUE = (0, 0, 255)
 | |
| YELLOW = (255, 255, 0)
 | |
| BLACK = (0, 0, 0)
 | |
| WHITE = (255, 255, 255)
 | |
| 
 | |
| _PATH_X = np.arange(192.)
 | |
| _PATH_XD = np.arange(192.)
 | |
| _PATH_PINV = compute_path_pinv(50)
 | |
| #_BB_OFFSET = 290, 332
 | |
| _BB_OFFSET = 0,0
 | |
| _BB_SCALE = 1164/640.
 | |
| _BB_TO_FULL_FRAME = np.asarray([
 | |
|     [_BB_SCALE, 0., _BB_OFFSET[0]],
 | |
|     [0., _BB_SCALE, _BB_OFFSET[1]],
 | |
|     [0., 0.,   1.]])
 | |
| _FULL_FRAME_TO_BB = np.linalg.inv(_BB_TO_FULL_FRAME)
 | |
| 
 | |
| METER_WIDTH = 20
 | |
| 
 | |
| ModelUIData = namedtuple("ModelUIData", ["cpath", "lpath", "rpath", "lead", "lead_future"])
 | |
| 
 | |
| _COLOR_CACHE : Dict[Tuple[int, int, int], Any] = {}
 | |
| def find_color(lidar_surface, color):
 | |
|   if color in _COLOR_CACHE:
 | |
|     return _COLOR_CACHE[color]
 | |
|   tcolor = 0
 | |
|   ret = 255
 | |
|   for x in lidar_surface.get_palette():
 | |
|     #print tcolor, x
 | |
|     if x[0:3] == color:
 | |
|       ret = tcolor
 | |
|       break
 | |
|     tcolor += 1
 | |
|   _COLOR_CACHE[color] = ret
 | |
|   return ret
 | |
| 
 | |
| def warp_points(pt_s, warp_matrix):
 | |
|   # pt_s are the source points, nxm array.
 | |
|   pt_d = np.dot(warp_matrix[:, :-1], pt_s.T) + warp_matrix[:, -1, None]
 | |
| 
 | |
|   # Divide by last dimension for representation in image space.
 | |
|   return (pt_d[:-1, :] / pt_d[-1, :]).T
 | |
| 
 | |
| def to_lid_pt(y, x):
 | |
|   px, py = -x * UP.lidar_zoom + UP.lidar_car_x, -y * UP.lidar_zoom + UP.lidar_car_y
 | |
|   if px > 0 and py > 0 and px < UP.lidar_x and py < UP.lidar_y:
 | |
|     return int(px), int(py)
 | |
|   return -1, -1
 | |
| 
 | |
| 
 | |
| def draw_path(y, x, color, img, calibration, top_down, lid_color=None):
 | |
|   # TODO: Remove big box.
 | |
|   uv_model_real = warp_points(np.column_stack((x, y)), calibration.car_to_model)
 | |
|   uv_model = np.round(uv_model_real).astype(int)
 | |
| 
 | |
|   uv_model_dots = uv_model[np.logical_and.reduce((np.all(  # pylint: disable=no-member
 | |
|     uv_model > 0, axis=1), uv_model[:, 0] < img.shape[1] - 1, uv_model[:, 1] <
 | |
|                                                   img.shape[0] - 1))]
 | |
| 
 | |
|   for i, j  in ((-1, 0), (0, -1), (0, 0), (0, 1), (1, 0)):
 | |
|     img[uv_model_dots[:, 1] + i, uv_model_dots[:, 0] + j] = color
 | |
| 
 | |
|   # draw lidar path point on lidar
 | |
|   # find color in 8 bit
 | |
|   if lid_color is not None and top_down is not None:
 | |
|     tcolor = find_color(top_down[0], lid_color)
 | |
|     for i in range(len(x)):
 | |
|       px, py = to_lid_pt(x[i], y[i])
 | |
|       if px != -1:
 | |
|         top_down[1][px, py] = tcolor
 | |
| 
 | |
| def draw_steer_path(speed_ms, curvature, color, img,
 | |
|                     calibration, top_down, VM, lid_color=None):
 | |
|   path_x = np.arange(101.)
 | |
|   path_y =  np.multiply(path_x, np.tan(np.arcsin(np.clip(path_x * curvature, -0.999, 0.999)) / 2.))
 | |
| 
 | |
|   draw_path(path_y, path_x, color, img, calibration, top_down, lid_color)
 | |
| 
 | |
| def draw_lead_car(closest, top_down):
 | |
|   if closest != None:
 | |
|     closest_y = int(round(UP.lidar_car_y - closest * UP.lidar_zoom))
 | |
|     if closest_y > 0:
 | |
|       top_down[1][int(round(UP.lidar_car_x - METER_WIDTH * 2)):int(
 | |
|         round(UP.lidar_car_x + METER_WIDTH * 2)), closest_y] = find_color(
 | |
|           top_down[0], (255, 0, 0))
 | |
| 
 | |
| def draw_lead_on(img, closest_x_m, closest_y_m, calibration, color, sz=10, img_offset=(0, 0)):
 | |
|   uv = warp_points(np.asarray([closest_x_m, closest_y_m]), calibration.car_to_bb)[0]
 | |
|   u, v = int(uv[0] + img_offset[0]), int(uv[1] + img_offset[1])
 | |
|   if u > 0 and u < 640 and v > 0 and v < 480 - 5:
 | |
|     img[v - 5 - sz:v - 5 + sz, u] = color
 | |
|     img[v - 5, u - sz:u + sz] = color
 | |
|   return u, v
 | |
| 
 | |
| 
 | |
| def init_plots(arr, name_to_arr_idx, plot_xlims, plot_ylims, plot_names, plot_colors, plot_styles, bigplots=False):
 | |
|   color_palette = { "r": (1,0,0),
 | |
|                     "g": (0,1,0),
 | |
|                     "b": (0,0,1),
 | |
|                     "k": (0,0,0),
 | |
|                     "y": (1,1,0),
 | |
|                     "p": (0,1,1),
 | |
|                     "m": (1,0,1) }
 | |
| 
 | |
|   if bigplots == True:
 | |
|     fig = plt.figure(figsize=(6.4, 7.0))
 | |
|   elif bigplots == False:
 | |
|     fig = plt.figure()
 | |
|   else:
 | |
|     fig = plt.figure(figsize=bigplots)
 | |
| 
 | |
|   fig.set_facecolor((0.2,0.2,0.2))
 | |
| 
 | |
|   axs = []
 | |
|   for pn in range(len(plot_ylims)):
 | |
|     ax = fig.add_subplot(len(plot_ylims),1,len(axs)+1)
 | |
|     ax.set_xlim(plot_xlims[pn][0], plot_xlims[pn][1])
 | |
|     ax.set_ylim(plot_ylims[pn][0], plot_ylims[pn][1])
 | |
|     ax.patch.set_facecolor((0.4, 0.4, 0.4))
 | |
|     axs.append(ax)
 | |
| 
 | |
|   plots = [] ;idxs = [] ;plot_select = []
 | |
|   for i, pl_list in enumerate(plot_names):
 | |
|     for j, item in enumerate(pl_list):
 | |
|       plot, = axs[i].plot(arr[:, name_to_arr_idx[item]],
 | |
|                           label=item,
 | |
|                           color=color_palette[plot_colors[i][j]],
 | |
|                           linestyle=plot_styles[i][j])
 | |
|       plots.append(plot)
 | |
|       idxs.append(name_to_arr_idx[item])
 | |
|       plot_select.append(i)
 | |
|     axs[i].set_title(", ".join("%s (%s)" % (nm, cl)
 | |
|                                for (nm, cl) in zip(pl_list, plot_colors[i])), fontsize=10)
 | |
|     if i < len(plot_ylims) - 1:
 | |
|       axs[i].set_xticks([])
 | |
| 
 | |
|   fig.canvas.draw()
 | |
| 
 | |
|   renderer = fig.canvas.get_renderer()
 | |
| 
 | |
|   if matplotlib.get_backend() == "MacOSX":
 | |
|     fig.draw(renderer)
 | |
| 
 | |
|   def draw_plots(arr):
 | |
|     for ax in axs:
 | |
|       ax.draw_artist(ax.patch)
 | |
|     for i in range(len(plots)):
 | |
|       plots[i].set_ydata(arr[:, idxs[i]])
 | |
|       axs[plot_select[i]].draw_artist(plots[i])
 | |
| 
 | |
|     if matplotlib.get_backend() == "QT4Agg":
 | |
|       fig.canvas.update()
 | |
|       fig.canvas.flush_events()
 | |
| 
 | |
|     raw_data = renderer.tostring_rgb()
 | |
|     x, y = fig.canvas.get_width_height()
 | |
| 
 | |
|     # Handle 2x scaling
 | |
|     if len(raw_data) == 4 * x * y * 3:
 | |
|       plot_surface = pygame.image.frombuffer(raw_data, (2*x, 2*y), "RGB").convert()
 | |
|       plot_surface = pygame.transform.scale(plot_surface, (x, y))
 | |
|     else:
 | |
|       plot_surface = pygame.image.frombuffer(raw_data, fig.canvas.get_width_height(), "RGB").convert()
 | |
|     return plot_surface
 | |
| 
 | |
|   return draw_plots
 | |
| 
 | |
| 
 | |
| def draw_mpc(liveMpc, top_down):
 | |
|   mpc_color = find_color(top_down[0], (0, 255, 0))
 | |
|   for p in zip(liveMpc.x, liveMpc.y):
 | |
|     px, py = to_lid_pt(*p)
 | |
|     top_down[1][px, py] = mpc_color
 | |
| 
 | |
| 
 | |
| 
 | |
| class CalibrationTransformsForWarpMatrix(object):
 | |
|   def __init__(self, model_to_full_frame, K, E):
 | |
|     self._model_to_full_frame = model_to_full_frame
 | |
|     self._K = K
 | |
|     self._E = E
 | |
| 
 | |
|   @property
 | |
|   def model_to_bb(self):
 | |
|     return _FULL_FRAME_TO_BB.dot(self._model_to_full_frame)
 | |
| 
 | |
|   @lazy_property
 | |
|   def model_to_full_frame(self):
 | |
|     return self._model_to_full_frame
 | |
| 
 | |
|   @lazy_property
 | |
|   def car_to_model(self):
 | |
|     return np.linalg.inv(self._model_to_full_frame).dot(self._K).dot(
 | |
|       self._E[:, [0, 1, 3]])
 | |
| 
 | |
|   @lazy_property
 | |
|   def car_to_bb(self):
 | |
|     return _BB_TO_FULL_FRAME.dot(self._K).dot(self._E[:, [0, 1, 3]])
 | |
| 
 | |
| 
 | |
| def pygame_modules_have_loaded():
 | |
|   return pygame.display.get_init() and pygame.font.get_init()
 | |
| 
 | |
| def draw_var(y, x, var, color, img, calibration, top_down):
 | |
|   # otherwise drawing gets stupid
 | |
|   var = max(1e-1, min(var, 0.7))
 | |
| 
 | |
|   varcolor = tuple(np.array(color)*0.5)
 | |
|   draw_path(y - var, x, varcolor, img, calibration, top_down)
 | |
|   draw_path(y + var, x, varcolor, img, calibration, top_down)
 | |
| 
 | |
| 
 | |
| class ModelPoly(object):
 | |
|   def __init__(self, model_path):
 | |
|     if len(model_path.points) == 0 and len(model_path.poly) == 0:
 | |
|       self.valid = False
 | |
|       return
 | |
| 
 | |
|     if len(model_path.poly):
 | |
|       self.poly = np.array(model_path.poly)
 | |
|     else:
 | |
|       self.poly = model_polyfit(model_path.points, _PATH_PINV)
 | |
| 
 | |
|     self.prob = model_path.prob
 | |
|     self.std = model_path.std
 | |
|     self.y = np.polyval(self.poly, _PATH_XD)
 | |
|     self.valid = True
 | |
| 
 | |
| def extract_model_data(md):
 | |
|   return ModelUIData(
 | |
|     cpath=ModelPoly(md.path),
 | |
|     lpath=ModelPoly(md.leftLane),
 | |
|     rpath=ModelPoly(md.rightLane),
 | |
|     lead=md.lead,
 | |
|     lead_future=md.leadFuture,
 | |
|     )
 | |
| 
 | |
| def plot_model(m, VM, v_ego, curvature, imgw, calibration, top_down, d_poly, top_down_color=216):
 | |
|   if calibration is None or top_down is None:
 | |
|     return
 | |
| 
 | |
|   for lead in [m.lead, m.lead_future]:
 | |
|     if lead.prob < 0.5:
 | |
|       continue
 | |
| 
 | |
|     lead_dist_from_radar = lead.dist - RADAR_TO_CAMERA
 | |
|     _, py_top = to_lid_pt(lead_dist_from_radar + lead.std, lead.relY)
 | |
|     px, py_bottom = to_lid_pt(lead_dist_from_radar - lead.std, lead.relY)
 | |
|     top_down[1][int(round(px - 4)):int(round(px + 4)), py_top:py_bottom] = top_down_color
 | |
| 
 | |
|   color = (0, int(255 * m.lpath.prob), 0)
 | |
|   for path in [m.cpath, m.lpath, m.rpath]:
 | |
|     if path.valid:
 | |
|       draw_path(path.y, _PATH_XD, color, imgw, calibration, top_down, YELLOW)
 | |
|       draw_var(path.y, _PATH_XD, path.std, color, imgw, calibration, top_down)
 | |
| 
 | |
|   if d_poly is not None:
 | |
|     dpath_y = np.polyval(d_poly, _PATH_X)
 | |
|     draw_path(dpath_y, _PATH_X, RED, imgw, calibration, top_down, RED)
 | |
| 
 | |
|   # draw user path from curvature
 | |
|   draw_steer_path(v_ego, curvature, BLUE, imgw, calibration, top_down, VM, BLUE)
 | |
| 
 | |
| 
 | |
| def maybe_update_radar_points(lt, lid_overlay):
 | |
|   ar_pts = []
 | |
|   if lt is not None:
 | |
|     ar_pts = {}
 | |
|     for track in lt:
 | |
|       ar_pts[track.trackId] = [track.dRel, track.yRel, track.vRel, track.aRel, track.oncoming, track.stationary]
 | |
|   for ids, pt in ar_pts.items():
 | |
|     px, py = to_lid_pt(pt[0], pt[1])
 | |
|     if px != -1:
 | |
|       if pt[-1]:
 | |
|         color = 240
 | |
|       elif pt[-2]:
 | |
|         color = 230
 | |
|       else:
 | |
|         color = 255
 | |
|       if int(ids) == 1:
 | |
|         lid_overlay[px - 2:px + 2, py - 10:py + 10] = 100
 | |
|       else:
 | |
|         lid_overlay[px - 2:px + 2, py - 2:py + 2] = color
 | |
| 
 | |
| def get_blank_lid_overlay(UP):
 | |
|   lid_overlay = np.zeros((UP.lidar_x, UP.lidar_y), 'uint8')
 | |
|   # Draw the car.
 | |
|   lid_overlay[int(round(UP.lidar_car_x - UP.car_hwidth)):int(
 | |
|     round(UP.lidar_car_x + UP.car_hwidth)), int(round(UP.lidar_car_y -
 | |
|                                                       UP.car_front))] = UP.car_color
 | |
|   lid_overlay[int(round(UP.lidar_car_x - UP.car_hwidth)):int(
 | |
|     round(UP.lidar_car_x + UP.car_hwidth)), int(round(UP.lidar_car_y +
 | |
|                                                       UP.car_back))] = UP.car_color
 | |
|   lid_overlay[int(round(UP.lidar_car_x - UP.car_hwidth)), int(
 | |
|     round(UP.lidar_car_y - UP.car_front)):int(round(
 | |
|       UP.lidar_car_y + UP.car_back))] = UP.car_color
 | |
|   lid_overlay[int(round(UP.lidar_car_x + UP.car_hwidth)), int(
 | |
|     round(UP.lidar_car_y - UP.car_front)):int(round(
 | |
|       UP.lidar_car_y + UP.car_back))] = UP.car_color
 | |
|   return lid_overlay
 | |
| 
 |