You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
107 lines
4.2 KiB
107 lines
4.2 KiB
import random
|
|
import numpy as np
|
|
import time
|
|
from unittest import mock
|
|
import pytest
|
|
|
|
from cereal import messaging
|
|
from openpilot.selfdrive.locationd.lagd import LateralLagEstimator, retrieve_initial_lag, masked_normalized_cross_correlation
|
|
from openpilot.selfdrive.test.process_replay.migration import migrate, migrate_carParams
|
|
from openpilot.selfdrive.locationd.test.test_locationd_scenarios import TEST_ROUTE
|
|
from openpilot.common.params import Params
|
|
from openpilot.tools.lib.logreader import LogReader
|
|
from openpilot.system.hardware import PC
|
|
|
|
MAX_ERR_FRAMES = 1
|
|
|
|
|
|
class TestLagd:
|
|
def test_read_saved_params(self):
|
|
params = Params()
|
|
|
|
lr = migrate(LogReader(TEST_ROUTE), [migrate_carParams])
|
|
CP = next(m for m in lr if m.which() == "carParams").carParams
|
|
|
|
msg = messaging.new_message('liveDelay')
|
|
msg.liveDelay.lateralDelayEstimate = random.random()
|
|
msg.liveDelay.validBlocks = random.randint(1, 10)
|
|
params.put("LiveLag", msg.to_bytes())
|
|
params.put("CarParamsPrevRoute", CP.as_builder().to_bytes())
|
|
|
|
saved_lag_params = retrieve_initial_lag(params, CP)
|
|
assert saved_lag_params is not None
|
|
|
|
lag, valid_blocks = saved_lag_params
|
|
assert lag == msg.liveDelay.lateralDelayEstimate
|
|
assert valid_blocks == msg.liveDelay.validBlocks
|
|
|
|
def test_ncc(self):
|
|
lag_frames = random.randint(1, 20)
|
|
|
|
desired_sig = np.sin(np.arange(0.0, 10.0, 0.1))
|
|
actual_sig = np.sin(np.arange(0.0, 10.0, 0.1) - lag_frames * 0.1)
|
|
mask = np.ones(len(desired_sig), dtype=bool)
|
|
|
|
corr = masked_normalized_cross_correlation(desired_sig, actual_sig, mask, 200)[len(desired_sig) - 1:len(desired_sig) + 20]
|
|
assert np.argmax(corr) == lag_frames
|
|
|
|
# add some noise
|
|
desired_sig += np.random.normal(0, 0.05, len(desired_sig))
|
|
actual_sig += np.random.normal(0, 0.05, len(actual_sig))
|
|
corr = masked_normalized_cross_correlation(desired_sig, actual_sig, mask, 200)[len(desired_sig) - 1:len(desired_sig) + 20]
|
|
assert np.argmax(corr) in range(lag_frames - MAX_ERR_FRAMES, lag_frames + MAX_ERR_FRAMES + 1)
|
|
|
|
def test_estimator(self):
|
|
class ZeroMock(mock.Mock):
|
|
def __getattr__(self, *args):
|
|
return 0
|
|
|
|
dt = 0.05
|
|
lag_frames = random.randint(1, 20)
|
|
|
|
mocked_CP = mock.Mock(steerActuatorDelay=1.0)
|
|
estimator = LateralLagEstimator(mocked_CP, 0.05,
|
|
block_count=10, min_valid_block_count=0,
|
|
block_size=1, okay_window_sec=100 * dt,
|
|
min_recovery_buffer_sec=0, min_yr=0)
|
|
for i in range(100):
|
|
t = i * dt
|
|
vego = 20.0
|
|
desired_cuvature = np.cos(t) * 100 / (vego ** 2)
|
|
actual_yr = np.cos(t - lag_frames * dt) * 100 / vego
|
|
msgs = [
|
|
(t, "carControl", mock.Mock(latActive=True)),
|
|
(t, "carState", mock.Mock(vEgo=vego, steeringPressed=False)),
|
|
(t, "controlsState", mock.Mock(desiredCurvature=desired_cuvature,
|
|
lateralControlState=mock.Mock(which=mock.Mock(return_value='debugControlState'), debugControlState=ZeroMock()))),
|
|
(t, "livePose", mock.Mock(orientationNED=ZeroMock(),
|
|
velocityDevice=ZeroMock(),
|
|
accelerationDevice=ZeroMock(),
|
|
angularVelocityDevice=ZeroMock(z=actual_yr))),
|
|
]
|
|
for t, w, m in msgs:
|
|
estimator.handle_log(t, w, m)
|
|
estimator.update_points()
|
|
estimator.update_estimate()
|
|
|
|
# expect one block filled, with lateralDelayEstimate equal to lateralDelay equal to lag_frames
|
|
output = estimator.get_msg(True)
|
|
assert np.allclose(output.liveDelay.lateralDelay, lag_frames * dt, atol=0.01)
|
|
assert output.liveDelay.status == 'estimated'
|
|
assert output.liveDelay.validBlocks == 1
|
|
|
|
@pytest.mark.skipif(PC, reason="only on device")
|
|
@pytest.mark.timeout(30)
|
|
def test_estimator_performance(self):
|
|
mocked_CP = mock.Mock(steerActuatorDelay=0.1)
|
|
estimator = LateralLagEstimator(mocked_CP, 0.05)
|
|
|
|
ds = []
|
|
for _ in range(1000):
|
|
st = time.perf_counter()
|
|
estimator.update_points()
|
|
estimator.update_estimate()
|
|
d = time.perf_counter() - st
|
|
ds.append(d)
|
|
|
|
assert np.mean(ds) < 0.05
|
|
|