openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

723 lines
26 KiB

// Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
// Licensed under the MIT License:
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
// This file contains types which are intended to help detect incorrect usage at compile
// time, but should then be optimized down to basic primitives (usually, integers) by the
// compiler.
#ifndef CAPNP_COMMON_H_
#define CAPNP_COMMON_H_
#if defined(__GNUC__) && !defined(CAPNP_HEADER_WARNINGS)
#pragma GCC system_header
#endif
#include <inttypes.h>
#include <kj/string.h>
#include <kj/memory.h>
#if CAPNP_DEBUG_TYPES
#include <kj/units.h>
#endif
namespace capnp {
#define CAPNP_VERSION_MAJOR 0
#define CAPNP_VERSION_MINOR 6
#define CAPNP_VERSION_MICRO 1
#define CAPNP_VERSION \
(CAPNP_VERSION_MAJOR * 1000000 + CAPNP_VERSION_MINOR * 1000 + CAPNP_VERSION_MICRO)
#ifndef CAPNP_LITE
#define CAPNP_LITE 0
#endif
typedef unsigned int uint;
struct Void {
// Type used for Void fields. Using C++'s "void" type creates a bunch of issues since it behaves
// differently from other types.
inline constexpr bool operator==(Void other) const { return true; }
inline constexpr bool operator!=(Void other) const { return false; }
};
static constexpr Void VOID = Void();
// Constant value for `Void`, which is an empty struct.
inline kj::StringPtr KJ_STRINGIFY(Void) { return "void"; }
struct Text;
struct Data;
enum class Kind: uint8_t {
PRIMITIVE,
BLOB,
ENUM,
STRUCT,
UNION,
INTERFACE,
LIST,
OTHER
// Some other type which is often a type parameter to Cap'n Proto templates, but which needs
// special handling. This includes types like AnyPointer, Dynamic*, etc.
};
enum class Style: uint8_t {
PRIMITIVE,
POINTER, // other than struct
STRUCT,
CAPABILITY
};
enum class ElementSize: uint8_t {
// Size of a list element.
VOID = 0,
BIT = 1,
BYTE = 2,
TWO_BYTES = 3,
FOUR_BYTES = 4,
EIGHT_BYTES = 5,
POINTER = 6,
INLINE_COMPOSITE = 7
};
enum class PointerType {
// Various wire types a pointer field can take
NULL_,
// Should be NULL, but that's #defined in stddef.h
STRUCT,
LIST,
CAPABILITY
};
namespace schemas {
template <typename T>
struct EnumInfo;
} // namespace schemas
namespace _ { // private
template <typename T, typename = void> struct Kind_;
template <> struct Kind_<Void> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<bool> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<int8_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<int16_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<int32_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<int64_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<uint8_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<uint16_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<uint32_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<uint64_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<float> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<double> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<Text> { static constexpr Kind kind = Kind::BLOB; };
template <> struct Kind_<Data> { static constexpr Kind kind = Kind::BLOB; };
template <typename T> struct Kind_<T, kj::VoidSfinae<typename T::_capnpPrivate::IsStruct>> {
static constexpr Kind kind = Kind::STRUCT;
};
template <typename T> struct Kind_<T, kj::VoidSfinae<typename T::_capnpPrivate::IsInterface>> {
static constexpr Kind kind = Kind::INTERFACE;
};
template <typename T> struct Kind_<T, kj::VoidSfinae<typename schemas::EnumInfo<T>::IsEnum>> {
static constexpr Kind kind = Kind::ENUM;
};
} // namespace _ (private)
template <typename T, Kind k = _::Kind_<T>::kind>
inline constexpr Kind kind() {
// This overload of kind() matches types which have a Kind_ specialization.
return k;
}
#if _MSC_VER
#define CAPNP_KIND(T) ::capnp::_::Kind_<T>::kind
// Avoid constexpr methods in MSVC (it remains buggy in many situations).
#else // _MSC_VER
#define CAPNP_KIND(T) ::capnp::kind<T>()
// Use this macro rather than kind<T>() in any code which must work in MSVC.
#endif // _MSC_VER, else
#if !CAPNP_LITE
template <typename T, Kind k = kind<T>()>
inline constexpr Style style() {
return k == Kind::PRIMITIVE || k == Kind::ENUM ? Style::PRIMITIVE
: k == Kind::STRUCT ? Style::STRUCT
: k == Kind::INTERFACE ? Style::CAPABILITY : Style::POINTER;
}
#endif // !CAPNP_LITE
template <typename T, Kind k = CAPNP_KIND(T)>
struct List;
#if _MSC_VER
template <typename T, Kind k>
struct List {};
// For some reason, without this declaration, MSVC will error out on some uses of List
// claiming that "T" -- as used in the default initializer for the second template param, "k" --
// is not defined. I do not understand this error, but adding this empty default declaration fixes
// it.
#endif
template <typename T> struct ListElementType_;
template <typename T> struct ListElementType_<List<T>> { typedef T Type; };
template <typename T> using ListElementType = typename ListElementType_<T>::Type;
namespace _ { // private
template <typename T, Kind k> struct Kind_<List<T, k>> {
static constexpr Kind kind = Kind::LIST;
};
} // namespace _ (private)
template <typename T, Kind k = CAPNP_KIND(T)> struct ReaderFor_ { typedef typename T::Reader Type; };
template <typename T> struct ReaderFor_<T, Kind::PRIMITIVE> { typedef T Type; };
template <typename T> struct ReaderFor_<T, Kind::ENUM> { typedef T Type; };
template <typename T> struct ReaderFor_<T, Kind::INTERFACE> { typedef typename T::Client Type; };
template <typename T> using ReaderFor = typename ReaderFor_<T>::Type;
// The type returned by List<T>::Reader::operator[].
template <typename T, Kind k = CAPNP_KIND(T)> struct BuilderFor_ { typedef typename T::Builder Type; };
template <typename T> struct BuilderFor_<T, Kind::PRIMITIVE> { typedef T Type; };
template <typename T> struct BuilderFor_<T, Kind::ENUM> { typedef T Type; };
template <typename T> struct BuilderFor_<T, Kind::INTERFACE> { typedef typename T::Client Type; };
template <typename T> using BuilderFor = typename BuilderFor_<T>::Type;
// The type returned by List<T>::Builder::operator[].
template <typename T, Kind k = CAPNP_KIND(T)> struct PipelineFor_ { typedef typename T::Pipeline Type;};
template <typename T> struct PipelineFor_<T, Kind::INTERFACE> { typedef typename T::Client Type; };
template <typename T> using PipelineFor = typename PipelineFor_<T>::Type;
template <typename T, Kind k = CAPNP_KIND(T)> struct TypeIfEnum_;
template <typename T> struct TypeIfEnum_<T, Kind::ENUM> { typedef T Type; };
template <typename T>
using TypeIfEnum = typename TypeIfEnum_<kj::Decay<T>>::Type;
template <typename T>
using FromReader = typename kj::Decay<T>::Reads;
// FromReader<MyType::Reader> = MyType (for any Cap'n Proto type).
template <typename T>
using FromBuilder = typename kj::Decay<T>::Builds;
// FromBuilder<MyType::Builder> = MyType (for any Cap'n Proto type).
template <typename T>
using FromPipeline = typename kj::Decay<T>::Pipelines;
// FromBuilder<MyType::Pipeline> = MyType (for any Cap'n Proto type).
template <typename T>
using FromClient = typename kj::Decay<T>::Calls;
// FromReader<MyType::Client> = MyType (for any Cap'n Proto interface type).
template <typename T>
using FromServer = typename kj::Decay<T>::Serves;
// FromBuilder<MyType::Server> = MyType (for any Cap'n Proto interface type).
template <typename T, typename = void>
struct FromAny_;
template <typename T>
struct FromAny_<T, kj::VoidSfinae<FromReader<T>>> {
using Type = FromReader<T>;
};
template <typename T>
struct FromAny_<T, kj::VoidSfinae<FromBuilder<T>>> {
using Type = FromBuilder<T>;
};
template <typename T>
struct FromAny_<T, kj::VoidSfinae<FromPipeline<T>>> {
using Type = FromPipeline<T>;
};
// Note that T::Client is covered by FromReader
template <typename T>
struct FromAny_<kj::Own<T>, kj::VoidSfinae<FromServer<T>>> {
using Type = FromServer<T>;
};
template <typename T>
struct FromAny_<T,
kj::EnableIf<_::Kind_<T>::kind == Kind::PRIMITIVE || _::Kind_<T>::kind == Kind::ENUM>> {
// TODO(msvc): Ideally the EnableIf condition would be `style<T>() == Style::PRIMITIVE`, but MSVC
// cannot yet use style<T>() in this constexpr context.
using Type = kj::Decay<T>;
};
template <typename T>
using FromAny = typename FromAny_<T>::Type;
// Given any Cap'n Proto value type as an input, return the Cap'n Proto base type. That is:
//
// Foo::Reader -> Foo
// Foo::Builder -> Foo
// Foo::Pipeline -> Foo
// Foo::Client -> Foo
// Own<Foo::Server> -> Foo
// uint32_t -> uint32_t
namespace _ { // private
template <typename T, Kind k = CAPNP_KIND(T)>
struct PointerHelpers;
#if _MSC_VER
template <typename T, Kind k>
struct PointerHelpers {};
// For some reason, without this declaration, MSVC will error out on some uses of PointerHelpers
// claiming that "T" -- as used in the default initializer for the second template param, "k" --
// is not defined. I do not understand this error, but adding this empty default declaration fixes
// it.
#endif
} // namespace _ (private)
struct MessageSize {
// Size of a message. Every struct type has a method `.totalSize()` that returns this.
uint64_t wordCount;
uint capCount;
};
// =======================================================================================
// Raw memory types and measures
using kj::byte;
class word { uint64_t content KJ_UNUSED_MEMBER; KJ_DISALLOW_COPY(word); public: word() = default; };
// word is an opaque type with size of 64 bits. This type is useful only to make pointer
// arithmetic clearer. Since the contents are private, the only way to access them is to first
// reinterpret_cast to some other pointer type.
//
// Copying is disallowed because you should always use memcpy(). Otherwise, you may run afoul of
// aliasing rules.
//
// A pointer of type word* should always be word-aligned even if won't actually be dereferenced as
// that type.
static_assert(sizeof(byte) == 1, "uint8_t is not one byte?");
static_assert(sizeof(word) == 8, "uint64_t is not 8 bytes?");
#if CAPNP_DEBUG_TYPES
// Set CAPNP_DEBUG_TYPES to 1 to use kj::Quantity for "count" types. Otherwise, plain integers are
// used. All the code should still operate exactly the same, we just lose compile-time checking.
// Note that this will also change symbol names, so it's important that the library and any clients
// be compiled with the same setting here.
//
// We disable this by default to reduce symbol name size and avoid any possibility of the compiler
// failing to fully-optimize the types, but anyone modifying Cap'n Proto itself should enable this
// during development and testing.
namespace _ { class BitLabel; class ElementLabel; struct WirePointer; }
template <uint width, typename T = uint>
using BitCountN = kj::Quantity<kj::Bounded<kj::maxValueForBits<width>(), T>, _::BitLabel>;
template <uint width, typename T = uint>
using ByteCountN = kj::Quantity<kj::Bounded<kj::maxValueForBits<width>(), T>, byte>;
template <uint width, typename T = uint>
using WordCountN = kj::Quantity<kj::Bounded<kj::maxValueForBits<width>(), T>, word>;
template <uint width, typename T = uint>
using ElementCountN = kj::Quantity<kj::Bounded<kj::maxValueForBits<width>(), T>, _::ElementLabel>;
template <uint width, typename T = uint>
using WirePointerCountN = kj::Quantity<kj::Bounded<kj::maxValueForBits<width>(), T>, _::WirePointer>;
typedef BitCountN<8, uint8_t> BitCount8;
typedef BitCountN<16, uint16_t> BitCount16;
typedef BitCountN<32, uint32_t> BitCount32;
typedef BitCountN<64, uint64_t> BitCount64;
typedef BitCountN<sizeof(uint) * 8, uint> BitCount;
typedef ByteCountN<8, uint8_t> ByteCount8;
typedef ByteCountN<16, uint16_t> ByteCount16;
typedef ByteCountN<32, uint32_t> ByteCount32;
typedef ByteCountN<64, uint64_t> ByteCount64;
typedef ByteCountN<sizeof(uint) * 8, uint> ByteCount;
typedef WordCountN<8, uint8_t> WordCount8;
typedef WordCountN<16, uint16_t> WordCount16;
typedef WordCountN<32, uint32_t> WordCount32;
typedef WordCountN<64, uint64_t> WordCount64;
typedef WordCountN<sizeof(uint) * 8, uint> WordCount;
typedef ElementCountN<8, uint8_t> ElementCount8;
typedef ElementCountN<16, uint16_t> ElementCount16;
typedef ElementCountN<32, uint32_t> ElementCount32;
typedef ElementCountN<64, uint64_t> ElementCount64;
typedef ElementCountN<sizeof(uint) * 8, uint> ElementCount;
typedef WirePointerCountN<8, uint8_t> WirePointerCount8;
typedef WirePointerCountN<16, uint16_t> WirePointerCount16;
typedef WirePointerCountN<32, uint32_t> WirePointerCount32;
typedef WirePointerCountN<64, uint64_t> WirePointerCount64;
typedef WirePointerCountN<sizeof(uint) * 8, uint> WirePointerCount;
template <uint width>
using BitsPerElementN = decltype(BitCountN<width>() / ElementCountN<width>());
template <uint width>
using BytesPerElementN = decltype(ByteCountN<width>() / ElementCountN<width>());
template <uint width>
using WordsPerElementN = decltype(WordCountN<width>() / ElementCountN<width>());
template <uint width>
using PointersPerElementN = decltype(WirePointerCountN<width>() / ElementCountN<width>());
using kj::bounded;
using kj::unbound;
using kj::unboundAs;
using kj::unboundMax;
using kj::unboundMaxBits;
using kj::assertMax;
using kj::assertMaxBits;
using kj::upgradeBound;
using kj::ThrowOverflow;
using kj::assumeBits;
using kj::assumeMax;
using kj::subtractChecked;
using kj::trySubtract;
template <typename T, typename U>
inline constexpr U* operator+(U* ptr, kj::Quantity<T, U> offset) {
return ptr + unbound(offset / kj::unit<kj::Quantity<T, U>>());
}
template <typename T, typename U>
inline constexpr const U* operator+(const U* ptr, kj::Quantity<T, U> offset) {
return ptr + unbound(offset / kj::unit<kj::Quantity<T, U>>());
}
template <typename T, typename U>
inline constexpr U* operator+=(U*& ptr, kj::Quantity<T, U> offset) {
return ptr = ptr + unbound(offset / kj::unit<kj::Quantity<T, U>>());
}
template <typename T, typename U>
inline constexpr const U* operator+=(const U*& ptr, kj::Quantity<T, U> offset) {
return ptr = ptr + unbound(offset / kj::unit<kj::Quantity<T, U>>());
}
template <typename T, typename U>
inline constexpr U* operator-(U* ptr, kj::Quantity<T, U> offset) {
return ptr - unbound(offset / kj::unit<kj::Quantity<T, U>>());
}
template <typename T, typename U>
inline constexpr const U* operator-(const U* ptr, kj::Quantity<T, U> offset) {
return ptr - unbound(offset / kj::unit<kj::Quantity<T, U>>());
}
template <typename T, typename U>
inline constexpr U* operator-=(U*& ptr, kj::Quantity<T, U> offset) {
return ptr = ptr - unbound(offset / kj::unit<kj::Quantity<T, U>>());
}
template <typename T, typename U>
inline constexpr const U* operator-=(const U*& ptr, kj::Quantity<T, U> offset) {
return ptr = ptr - unbound(offset / kj::unit<kj::Quantity<T, U>>());
}
constexpr auto BITS = kj::unit<BitCountN<1>>();
constexpr auto BYTES = kj::unit<ByteCountN<1>>();
constexpr auto WORDS = kj::unit<WordCountN<1>>();
constexpr auto ELEMENTS = kj::unit<ElementCountN<1>>();
constexpr auto POINTERS = kj::unit<WirePointerCountN<1>>();
constexpr auto ZERO = kj::bounded<0>();
constexpr auto ONE = kj::bounded<1>();
// GCC 4.7 actually gives unused warnings on these constants in opt mode...
constexpr auto BITS_PER_BYTE KJ_UNUSED = bounded<8>() * BITS / BYTES;
constexpr auto BITS_PER_WORD KJ_UNUSED = bounded<64>() * BITS / WORDS;
constexpr auto BYTES_PER_WORD KJ_UNUSED = bounded<8>() * BYTES / WORDS;
constexpr auto BITS_PER_POINTER KJ_UNUSED = bounded<64>() * BITS / POINTERS;
constexpr auto BYTES_PER_POINTER KJ_UNUSED = bounded<8>() * BYTES / POINTERS;
constexpr auto WORDS_PER_POINTER KJ_UNUSED = ONE * WORDS / POINTERS;
constexpr auto POINTER_SIZE_IN_WORDS = ONE * POINTERS * WORDS_PER_POINTER;
constexpr uint SEGMENT_WORD_COUNT_BITS = 29; // Number of words in a segment.
constexpr uint LIST_ELEMENT_COUNT_BITS = 29; // Number of elements in a list.
constexpr uint STRUCT_DATA_WORD_COUNT_BITS = 16; // Number of words in a Struct data section.
constexpr uint STRUCT_POINTER_COUNT_BITS = 16; // Number of pointers in a Struct pointer section.
constexpr uint BLOB_SIZE_BITS = 29; // Number of bytes in a blob.
typedef WordCountN<SEGMENT_WORD_COUNT_BITS> SegmentWordCount;
typedef ElementCountN<LIST_ELEMENT_COUNT_BITS> ListElementCount;
typedef WordCountN<STRUCT_DATA_WORD_COUNT_BITS, uint16_t> StructDataWordCount;
typedef WirePointerCountN<STRUCT_POINTER_COUNT_BITS, uint16_t> StructPointerCount;
typedef ByteCountN<BLOB_SIZE_BITS> BlobSize;
constexpr auto MAX_SEGMENT_WORDS =
bounded<kj::maxValueForBits<SEGMENT_WORD_COUNT_BITS>()>() * WORDS;
constexpr auto MAX_LIST_ELEMENTS =
bounded<kj::maxValueForBits<LIST_ELEMENT_COUNT_BITS>()>() * ELEMENTS;
constexpr auto MAX_STUCT_DATA_WORDS =
bounded<kj::maxValueForBits<STRUCT_DATA_WORD_COUNT_BITS>()>() * WORDS;
constexpr auto MAX_STRUCT_POINTER_COUNT =
bounded<kj::maxValueForBits<STRUCT_POINTER_COUNT_BITS>()>() * POINTERS;
using StructDataBitCount = decltype(WordCountN<STRUCT_POINTER_COUNT_BITS>() * BITS_PER_WORD);
// Number of bits in a Struct data segment (should come out to BitCountN<22>).
using StructDataOffset = decltype(StructDataBitCount() * (ONE * ELEMENTS / BITS));
using StructPointerOffset = StructPointerCount;
// Type of a field offset.
inline StructDataOffset assumeDataOffset(uint32_t offset) {
return assumeMax(MAX_STUCT_DATA_WORDS * BITS_PER_WORD * (ONE * ELEMENTS / BITS),
bounded(offset) * ELEMENTS);
}
inline StructPointerOffset assumePointerOffset(uint32_t offset) {
return assumeMax(MAX_STRUCT_POINTER_COUNT, bounded(offset) * POINTERS);
}
constexpr uint MAX_TEXT_SIZE = kj::maxValueForBits<BLOB_SIZE_BITS>() - 1;
typedef kj::Quantity<kj::Bounded<MAX_TEXT_SIZE, uint>, byte> TextSize;
// Not including NUL terminator.
template <typename T>
inline KJ_CONSTEXPR() decltype(bounded<sizeof(T)>() * BYTES / ELEMENTS) bytesPerElement() {
return bounded<sizeof(T)>() * BYTES / ELEMENTS;
}
template <typename T>
inline KJ_CONSTEXPR() decltype(bounded<sizeof(T) * 8>() * BITS / ELEMENTS) bitsPerElement() {
return bounded<sizeof(T) * 8>() * BITS / ELEMENTS;
}
template <typename T, uint maxN>
inline constexpr kj::Quantity<kj::Bounded<maxN, size_t>, T>
intervalLength(const T* a, const T* b, kj::Quantity<kj::BoundedConst<maxN>, T>) {
return kj::assumeMax<maxN>(b - a) * kj::unit<kj::Quantity<kj::BoundedConst<1u>, T>>();
}
template <typename T, typename U>
inline constexpr kj::ArrayPtr<const U> arrayPtr(const U* ptr, kj::Quantity<T, U> size) {
return kj::ArrayPtr<const U>(ptr, unbound(size / kj::unit<kj::Quantity<T, U>>()));
}
template <typename T, typename U>
inline constexpr kj::ArrayPtr<U> arrayPtr(U* ptr, kj::Quantity<T, U> size) {
return kj::ArrayPtr<U>(ptr, unbound(size / kj::unit<kj::Quantity<T, U>>()));
}
#else
template <uint width, typename T = uint>
using BitCountN = T;
template <uint width, typename T = uint>
using ByteCountN = T;
template <uint width, typename T = uint>
using WordCountN = T;
template <uint width, typename T = uint>
using ElementCountN = T;
template <uint width, typename T = uint>
using WirePointerCountN = T;
// XXX
typedef BitCountN<8, uint8_t> BitCount8;
typedef BitCountN<16, uint16_t> BitCount16;
typedef BitCountN<32, uint32_t> BitCount32;
typedef BitCountN<64, uint64_t> BitCount64;
typedef BitCountN<sizeof(uint) * 8, uint> BitCount;
typedef ByteCountN<8, uint8_t> ByteCount8;
typedef ByteCountN<16, uint16_t> ByteCount16;
typedef ByteCountN<32, uint32_t> ByteCount32;
typedef ByteCountN<64, uint64_t> ByteCount64;
typedef ByteCountN<sizeof(uint) * 8, uint> ByteCount;
typedef WordCountN<8, uint8_t> WordCount8;
typedef WordCountN<16, uint16_t> WordCount16;
typedef WordCountN<32, uint32_t> WordCount32;
typedef WordCountN<64, uint64_t> WordCount64;
typedef WordCountN<sizeof(uint) * 8, uint> WordCount;
typedef ElementCountN<8, uint8_t> ElementCount8;
typedef ElementCountN<16, uint16_t> ElementCount16;
typedef ElementCountN<32, uint32_t> ElementCount32;
typedef ElementCountN<64, uint64_t> ElementCount64;
typedef ElementCountN<sizeof(uint) * 8, uint> ElementCount;
typedef WirePointerCountN<8, uint8_t> WirePointerCount8;
typedef WirePointerCountN<16, uint16_t> WirePointerCount16;
typedef WirePointerCountN<32, uint32_t> WirePointerCount32;
typedef WirePointerCountN<64, uint64_t> WirePointerCount64;
typedef WirePointerCountN<sizeof(uint) * 8, uint> WirePointerCount;
template <uint width>
using BitsPerElementN = decltype(BitCountN<width>() / ElementCountN<width>());
template <uint width>
using BytesPerElementN = decltype(ByteCountN<width>() / ElementCountN<width>());
template <uint width>
using WordsPerElementN = decltype(WordCountN<width>() / ElementCountN<width>());
template <uint width>
using PointersPerElementN = decltype(WirePointerCountN<width>() / ElementCountN<width>());
using kj::ThrowOverflow;
// YYY
template <uint i> inline constexpr uint bounded() { return i; }
template <typename T> inline constexpr T bounded(T i) { return i; }
template <typename T> inline constexpr T unbound(T i) { return i; }
template <typename T, typename U> inline constexpr T unboundAs(U i) { return i; }
template <uint64_t requestedMax, typename T> inline constexpr uint unboundMax(T i) { return i; }
template <uint bits, typename T> inline constexpr uint unboundMaxBits(T i) { return i; }
template <uint newMax, typename T, typename ErrorFunc>
inline T assertMax(T value, ErrorFunc&& func) {
if (KJ_UNLIKELY(value > newMax)) func();
return value;
}
template <typename T, typename ErrorFunc>
inline T assertMax(uint newMax, T value, ErrorFunc&& func) {
if (KJ_UNLIKELY(value > newMax)) func();
return value;
}
template <uint bits, typename T, typename ErrorFunc = ThrowOverflow>
inline T assertMaxBits(T value, ErrorFunc&& func = ErrorFunc()) {
if (KJ_UNLIKELY(value > kj::maxValueForBits<bits>())) func();
return value;
}
template <typename T, typename ErrorFunc = ThrowOverflow>
inline T assertMaxBits(uint bits, T value, ErrorFunc&& func = ErrorFunc()) {
if (KJ_UNLIKELY(value > (1ull << bits) - 1)) func();
return value;
}
template <typename T, typename U> inline constexpr T upgradeBound(U i) { return i; }
template <uint bits, typename T> inline constexpr T assumeBits(T i) { return i; }
template <uint64_t max, typename T> inline constexpr T assumeMax(T i) { return i; }
template <typename T, typename U, typename ErrorFunc = ThrowOverflow>
inline auto subtractChecked(T a, U b, ErrorFunc&& errorFunc = ErrorFunc())
-> decltype(a - b) {
if (b > a) errorFunc();
return a - b;
}
template <typename T, typename U>
inline auto trySubtract(T a, U b) -> kj::Maybe<decltype(a - b)> {
if (b > a) {
return nullptr;
} else {
return a - b;
}
}
constexpr uint BITS = 1;
constexpr uint BYTES = 1;
constexpr uint WORDS = 1;
constexpr uint ELEMENTS = 1;
constexpr uint POINTERS = 1;
constexpr uint ZERO = 0;
constexpr uint ONE = 1;
// GCC 4.7 actually gives unused warnings on these constants in opt mode...
constexpr uint BITS_PER_BYTE KJ_UNUSED = 8;
constexpr uint BITS_PER_WORD KJ_UNUSED = 64;
constexpr uint BYTES_PER_WORD KJ_UNUSED = 8;
constexpr uint BITS_PER_POINTER KJ_UNUSED = 64;
constexpr uint BYTES_PER_POINTER KJ_UNUSED = 8;
constexpr uint WORDS_PER_POINTER KJ_UNUSED = 1;
// XXX
constexpr uint POINTER_SIZE_IN_WORDS = ONE * POINTERS * WORDS_PER_POINTER;
constexpr uint SEGMENT_WORD_COUNT_BITS = 29; // Number of words in a segment.
constexpr uint LIST_ELEMENT_COUNT_BITS = 29; // Number of elements in a list.
constexpr uint STRUCT_DATA_WORD_COUNT_BITS = 16; // Number of words in a Struct data section.
constexpr uint STRUCT_POINTER_COUNT_BITS = 16; // Number of pointers in a Struct pointer section.
constexpr uint BLOB_SIZE_BITS = 29; // Number of bytes in a blob.
typedef WordCountN<SEGMENT_WORD_COUNT_BITS> SegmentWordCount;
typedef ElementCountN<LIST_ELEMENT_COUNT_BITS> ListElementCount;
typedef WordCountN<STRUCT_DATA_WORD_COUNT_BITS, uint16_t> StructDataWordCount;
typedef WirePointerCountN<STRUCT_POINTER_COUNT_BITS, uint16_t> StructPointerCount;
typedef ByteCountN<BLOB_SIZE_BITS> BlobSize;
// YYY
constexpr auto MAX_SEGMENT_WORDS = kj::maxValueForBits<SEGMENT_WORD_COUNT_BITS>();
constexpr auto MAX_LIST_ELEMENTS = kj::maxValueForBits<LIST_ELEMENT_COUNT_BITS>();
constexpr auto MAX_STUCT_DATA_WORDS = kj::maxValueForBits<STRUCT_DATA_WORD_COUNT_BITS>();
constexpr auto MAX_STRUCT_POINTER_COUNT = kj::maxValueForBits<STRUCT_POINTER_COUNT_BITS>();
typedef uint StructDataBitCount;
typedef uint StructDataOffset;
typedef uint StructPointerOffset;
inline StructDataOffset assumeDataOffset(uint32_t offset) { return offset; }
inline StructPointerOffset assumePointerOffset(uint32_t offset) { return offset; }
constexpr uint MAX_TEXT_SIZE = kj::maxValueForBits<BLOB_SIZE_BITS>() - 1;
typedef uint TextSize;
template <typename T>
inline KJ_CONSTEXPR() size_t bytesPerElement() { return sizeof(T); }
template <typename T>
inline KJ_CONSTEXPR() size_t bitsPerElement() { return sizeof(T) * 8; }
template <typename T>
inline constexpr ptrdiff_t intervalLength(const T* a, const T* b, uint) {
return b - a;
}
template <typename T, typename U>
inline constexpr kj::ArrayPtr<const U> arrayPtr(const U* ptr, T size) {
return kj::arrayPtr(ptr, size);
}
template <typename T, typename U>
inline constexpr kj::ArrayPtr<U> arrayPtr(U* ptr, T size) {
return kj::arrayPtr(ptr, size);
}
#endif
} // namespace capnp
#endif // CAPNP_COMMON_H_