openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

212 lines
8.0 KiB

// Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
// Licensed under the MIT License:
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#ifndef KJ_STRING_TREE_H_
#define KJ_STRING_TREE_H_
#if defined(__GNUC__) && !KJ_HEADER_WARNINGS
#pragma GCC system_header
#endif
#include "string.h"
namespace kj {
class StringTree {
// A long string, represented internally as a tree of strings. This data structure is like a
// String, but optimized for concatenation and iteration at the expense of seek time. The
// structure is intended to be used for building large text blobs from many small pieces, where
// repeatedly concatenating smaller strings into larger ones would waste copies. This structure
// is NOT intended for use cases requiring random access or computing substrings. For those,
// you should use a Rope, which is a much more complicated data structure.
//
// The proper way to construct a StringTree is via kj::strTree(...), which works just like
// kj::str(...) but returns a StringTree rather than a String.
//
// KJ_STRINGIFY() functions that construct large strings from many smaller strings are encouraged
// to return StringTree rather than a flat char container.
public:
inline StringTree(): size_(0) {}
inline StringTree(String&& text): size_(text.size()), text(kj::mv(text)) {}
StringTree(Array<StringTree>&& pieces, StringPtr delim);
// Build a StringTree by concatenating the given pieces, delimited by the given delimiter
// (e.g. ", ").
inline size_t size() const { return size_; }
template <typename Func>
void visit(Func&& func) const;
String flatten() const;
// Return the contents as a string.
// TODO(someday): flatten() when *this is an rvalue and when branches.size() == 0 could simply
// return `kj::mv(text)`. Requires reference qualifiers (Clang 3.3 / GCC 4.8).
void flattenTo(char* __restrict__ target) const;
// Copy the contents to the given character array. Does not add a NUL terminator.
private:
size_t size_;
String text;
struct Branch;
Array<Branch> branches; // In order.
inline void fill(char* pos, size_t branchIndex);
template <typename First, typename... Rest>
void fill(char* pos, size_t branchIndex, First&& first, Rest&&... rest);
template <typename... Rest>
void fill(char* pos, size_t branchIndex, StringTree&& first, Rest&&... rest);
template <typename... Rest>
void fill(char* pos, size_t branchIndex, Array<char>&& first, Rest&&... rest);
template <typename... Rest>
void fill(char* pos, size_t branchIndex, String&& first, Rest&&... rest);
template <typename... Params>
static StringTree concat(Params&&... params);
static StringTree&& concat(StringTree&& param) { return kj::mv(param); }
template <typename T>
static inline size_t flatSize(const T& t) { return t.size(); }
static inline size_t flatSize(String&& s) { return 0; }
static inline size_t flatSize(StringTree&& s) { return 0; }
template <typename T>
static inline size_t branchCount(const T& t) { return 0; }
static inline size_t branchCount(String&& s) { return 1; }
static inline size_t branchCount(StringTree&& s) { return 1; }
template <typename... Params>
friend StringTree strTree(Params&&... params);
};
inline StringTree&& KJ_STRINGIFY(StringTree&& tree) { return kj::mv(tree); }
inline const StringTree& KJ_STRINGIFY(const StringTree& tree) { return tree; }
inline StringTree KJ_STRINGIFY(Array<StringTree>&& trees) { return StringTree(kj::mv(trees), ""); }
template <typename... Params>
StringTree strTree(Params&&... params);
// Build a StringTree by stringifying the given parameters and concatenating the results.
// If any of the parameters stringify to StringTree rvalues, they will be incorporated as
// branches to avoid a copy.
// =======================================================================================
// Inline implementation details
namespace _ { // private
template <typename... Rest>
char* fill(char* __restrict__ target, const StringTree& first, Rest&&... rest) {
// Make str() work with stringifiers that return StringTree by patching fill().
first.flattenTo(target);
return fill(target + first.size(), kj::fwd<Rest>(rest)...);
}
template <typename T> constexpr bool isStringTree() { return false; }
template <> constexpr bool isStringTree<StringTree>() { return true; }
inline StringTree&& toStringTreeOrCharSequence(StringTree&& tree) { return kj::mv(tree); }
inline StringTree toStringTreeOrCharSequence(String&& str) { return StringTree(kj::mv(str)); }
template <typename T>
inline auto toStringTreeOrCharSequence(T&& value)
-> decltype(toCharSequence(kj::fwd<T>(value))) {
static_assert(!isStringTree<Decay<T>>(),
"When passing a StringTree into kj::strTree(), either pass it by rvalue "
"(use kj::mv(value)) or explicitly call value.flatten() to make a copy.");
return toCharSequence(kj::fwd<T>(value));
}
} // namespace _ (private)
struct StringTree::Branch {
size_t index;
// Index in `text` where this branch should be inserted.
StringTree content;
};
template <typename Func>
void StringTree::visit(Func&& func) const {
size_t pos = 0;
for (auto& branch: branches) {
if (branch.index > pos) {
func(text.slice(pos, branch.index));
pos = branch.index;
}
branch.content.visit(func);
}
if (text.size() > pos) {
func(text.slice(pos, text.size()));
}
}
inline void StringTree::fill(char* pos, size_t branchIndex) {
KJ_IREQUIRE(pos == text.end() && branchIndex == branches.size(),
kj::str(text.end() - pos, ' ', branches.size() - branchIndex).cStr());
}
template <typename First, typename... Rest>
void StringTree::fill(char* pos, size_t branchIndex, First&& first, Rest&&... rest) {
pos = _::fill(pos, kj::fwd<First>(first));
fill(pos, branchIndex, kj::fwd<Rest>(rest)...);
}
template <typename... Rest>
void StringTree::fill(char* pos, size_t branchIndex, StringTree&& first, Rest&&... rest) {
branches[branchIndex].index = pos - text.begin();
branches[branchIndex].content = kj::mv(first);
fill(pos, branchIndex + 1, kj::fwd<Rest>(rest)...);
}
template <typename... Rest>
void StringTree::fill(char* pos, size_t branchIndex, String&& first, Rest&&... rest) {
branches[branchIndex].index = pos - text.begin();
branches[branchIndex].content = StringTree(kj::mv(first));
fill(pos, branchIndex + 1, kj::fwd<Rest>(rest)...);
}
template <typename... Params>
StringTree StringTree::concat(Params&&... params) {
StringTree result;
result.size_ = _::sum({params.size()...});
result.text = heapString(
_::sum({StringTree::flatSize(kj::fwd<Params>(params))...}));
result.branches = heapArray<StringTree::Branch>(
_::sum({StringTree::branchCount(kj::fwd<Params>(params))...}));
result.fill(result.text.begin(), 0, kj::fwd<Params>(params)...);
return result;
}
template <typename... Params>
StringTree strTree(Params&&... params) {
return StringTree::concat(_::toStringTreeOrCharSequence(kj::fwd<Params>(params))...);
}
} // namespace kj
#endif // KJ_STRING_TREE_H_