openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

106 lines
3.6 KiB

import math
import numpy as np
from common.numpy_fast import interp
from common.realtime import sec_since_boot
from selfdrive.modeld.constants import T_IDXS
from selfdrive.controls.lib.radar_helpers import _LEAD_ACCEL_TAU
from selfdrive.controls.lib.lead_mpc_lib import libmpc_py
from selfdrive.controls.lib.drive_helpers import MPC_COST_LONG, CONTROL_N
from selfdrive.swaglog import cloudlog
MPC_T = list(np.arange(0,1.,.2)) + list(np.arange(1.,10.6,.6))
class LeadMpc():
def __init__(self, mpc_id):
self.lead_id = mpc_id
self.reset_mpc()
self.prev_lead_status = False
self.prev_lead_x = 0.0
self.new_lead = False
self.last_cloudlog_t = 0.0
self.n_its = 0
self.duration = 0
self.status = False
def reset_mpc(self):
ffi, self.libmpc = libmpc_py.get_libmpc(self.lead_id)
self.libmpc.init(MPC_COST_LONG.TTC, MPC_COST_LONG.DISTANCE,
MPC_COST_LONG.ACCELERATION, MPC_COST_LONG.JERK)
self.mpc_solution = ffi.new("log_t *")
self.cur_state = ffi.new("state_t *")
self.cur_state[0].v_ego = 0
self.cur_state[0].a_ego = 0
self.a_lead_tau = _LEAD_ACCEL_TAU
def set_cur_state(self, v, a):
v_safe = max(v, 1e-3)
a_safe = a
self.cur_state[0].v_ego = v_safe
self.cur_state[0].a_ego = a_safe
def update(self, CS, radarstate, v_cruise):
v_ego = CS.vEgo
if self.lead_id == 0:
lead = radarstate.leadOne
else:
lead = radarstate.leadOne
self.status = lead.status and lead.modelProb > .5
# Setup current mpc state
self.cur_state[0].x_ego = 0.0
if lead is not None and lead.status:
x_lead = lead.dRel
v_lead = max(0.0, lead.vLead)
a_lead = lead.aLeadK
if (v_lead < 0.1 or -a_lead / 2.0 > v_lead):
v_lead = 0.0
a_lead = 0.0
self.a_lead_tau = lead.aLeadTau
self.new_lead = False
if not self.prev_lead_status or abs(x_lead - self.prev_lead_x) > 2.5:
self.libmpc.init_with_simulation(v_ego, x_lead, v_lead, a_lead, self.a_lead_tau)
self.new_lead = True
self.prev_lead_status = True
self.prev_lead_x = x_lead
self.cur_state[0].x_l = x_lead
self.cur_state[0].v_l = v_lead
else:
self.prev_lead_status = False
# Fake a fast lead car, so mpc keeps running
self.cur_state[0].x_l = 50.0
self.cur_state[0].v_l = v_ego + 10.0
a_lead = 0.0
self.a_lead_tau = _LEAD_ACCEL_TAU
# Calculate mpc
t = sec_since_boot()
self.n_its = self.libmpc.run_mpc(self.cur_state, self.mpc_solution, self.a_lead_tau, a_lead)
self.v_solution = interp(T_IDXS[:CONTROL_N], MPC_T, self.mpc_solution.v_ego)
self.a_solution = interp(T_IDXS[:CONTROL_N], MPC_T, self.mpc_solution.a_ego)
self.duration = int((sec_since_boot() - t) * 1e9)
# Reset if NaN or goes through lead car
crashing = any(lead - ego < -50 for (lead, ego) in zip(self.mpc_solution[0].x_l, self.mpc_solution[0].x_ego))
nans = any(math.isnan(x) for x in self.mpc_solution[0].v_ego)
backwards = min(self.mpc_solution[0].v_ego) < -0.01
if ((backwards or crashing) and self.prev_lead_status) or nans:
if t > self.last_cloudlog_t + 5.0:
self.last_cloudlog_t = t
cloudlog.warning("Longitudinal mpc %d reset - backwards: %s crashing: %s nan: %s" % (
self.lead_id, backwards, crashing, nans))
self.libmpc.init(MPC_COST_LONG.TTC, MPC_COST_LONG.DISTANCE,
MPC_COST_LONG.ACCELERATION, MPC_COST_LONG.JERK)
self.cur_state[0].v_ego = v_ego
self.cur_state[0].a_ego = 0.0
self.a_mpc = CS.aEgo
self.prev_lead_status = False