You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							268 lines
						
					
					
						
							8.4 KiB
						
					
					
				
			
		
		
	
	
							268 lines
						
					
					
						
							8.4 KiB
						
					
					
				| import itertools
 | |
| from typing import Any, Dict, Tuple
 | |
| 
 | |
| import matplotlib.pyplot as plt
 | |
| import numpy as np
 | |
| import pygame  # pylint: disable=import-error
 | |
| 
 | |
| from matplotlib.backends.backend_agg import FigureCanvasAgg
 | |
| 
 | |
| from common.transformations.camera import (eon_f_frame_size, eon_f_focal_length,
 | |
|                                            tici_f_frame_size, tici_f_focal_length,
 | |
|                                            get_view_frame_from_calib_frame)
 | |
| from selfdrive.controls.lib.radar_helpers import RADAR_TO_CAMERA
 | |
| 
 | |
| 
 | |
| RED = (255, 0, 0)
 | |
| GREEN = (0, 255, 0)
 | |
| BLUE = (0, 0, 255)
 | |
| YELLOW = (255, 255, 0)
 | |
| BLACK = (0, 0, 0)
 | |
| WHITE = (255, 255, 255)
 | |
| 
 | |
| _FULL_FRAME_SIZE = {
 | |
| }
 | |
| 
 | |
| class UIParams:
 | |
|   lidar_x, lidar_y, lidar_zoom = 384, 960, 6
 | |
|   lidar_car_x, lidar_car_y = lidar_x / 2., lidar_y / 1.1
 | |
|   car_hwidth = 1.7272 / 2 * lidar_zoom
 | |
|   car_front = 2.6924 * lidar_zoom
 | |
|   car_back = 1.8796 * lidar_zoom
 | |
|   car_color = 110
 | |
| UP = UIParams
 | |
| 
 | |
| _BB_TO_FULL_FRAME = {}
 | |
| _CALIB_BB_TO_FULL = {}
 | |
| _FULL_FRAME_TO_BB = {}
 | |
| _INTRINSICS = {}
 | |
| 
 | |
| eon_f_qcam_frame_size = (480, 360)
 | |
| tici_f_qcam_frame_size = (528, 330)
 | |
| 
 | |
| cams = [(eon_f_frame_size, eon_f_focal_length, eon_f_frame_size),
 | |
|         (tici_f_frame_size, tici_f_focal_length, tici_f_frame_size),
 | |
|         (eon_f_qcam_frame_size, eon_f_focal_length, eon_f_frame_size),
 | |
|         (tici_f_qcam_frame_size, tici_f_focal_length, tici_f_frame_size)]
 | |
| for size, focal, full_size in cams:
 | |
|   sz = size[0] * size[1]
 | |
|   _BB_SCALE = size[0] / 640.
 | |
|   _BB_TO_FULL_FRAME[sz] = np.asarray([
 | |
|       [_BB_SCALE, 0., 0.],
 | |
|       [0., _BB_SCALE, 0.],
 | |
|       [0., 0., 1.]])
 | |
|   calib_scale = full_size[0] / 640.
 | |
|   _CALIB_BB_TO_FULL[sz] = np.asarray([
 | |
|       [calib_scale, 0., 0.],
 | |
|       [0., calib_scale, 0.],
 | |
|       [0., 0., 1.]])
 | |
|   _FULL_FRAME_TO_BB[sz] = np.linalg.inv(_BB_TO_FULL_FRAME[sz])
 | |
|   _FULL_FRAME_SIZE[sz] = (size[0], size[1])
 | |
|   _INTRINSICS[sz] = np.array([
 | |
|     [focal, 0., full_size[0] / 2.],
 | |
|     [0., focal, full_size[1] / 2.],
 | |
|     [0., 0., 1.]])
 | |
| 
 | |
| 
 | |
| METER_WIDTH = 20
 | |
| 
 | |
| class Calibration:
 | |
|   def __init__(self, num_px, rpy, intrinsic):
 | |
|     self.intrinsic = intrinsic
 | |
|     self.extrinsics_matrix = get_view_frame_from_calib_frame(rpy[0], rpy[1], rpy[2], 0.0)[:,:3]
 | |
|     self.zoom = _CALIB_BB_TO_FULL[num_px][0, 0]
 | |
| 
 | |
|   def car_space_to_ff(self, x, y, z):
 | |
|     car_space_projective = np.column_stack((x, y, z)).T
 | |
| 
 | |
|     ep = self.extrinsics_matrix.dot(car_space_projective)
 | |
|     kep = self.intrinsic.dot(ep)
 | |
|     return (kep[:-1, :] / kep[-1, :]).T
 | |
| 
 | |
|   def car_space_to_bb(self, x, y, z):
 | |
|     pts = self.car_space_to_ff(x, y, z)
 | |
|     return pts / self.zoom
 | |
| 
 | |
| 
 | |
| _COLOR_CACHE : Dict[Tuple[int, int, int], Any] = {}
 | |
| def find_color(lidar_surface, color):
 | |
|   if color in _COLOR_CACHE:
 | |
|     return _COLOR_CACHE[color]
 | |
|   tcolor = 0
 | |
|   ret = 255
 | |
|   for x in lidar_surface.get_palette():
 | |
|     if x[0:3] == color:
 | |
|       ret = tcolor
 | |
|       break
 | |
|     tcolor += 1
 | |
|   _COLOR_CACHE[color] = ret
 | |
|   return ret
 | |
| 
 | |
| 
 | |
| def to_topdown_pt(y, x):
 | |
|   px, py = x * UP.lidar_zoom + UP.lidar_car_x, -y * UP.lidar_zoom + UP.lidar_car_y
 | |
|   if px > 0 and py > 0 and px < UP.lidar_x and py < UP.lidar_y:
 | |
|     return int(px), int(py)
 | |
|   return -1, -1
 | |
| 
 | |
| 
 | |
| def draw_path(path, color, img, calibration, top_down, lid_color=None, z_off=0):
 | |
|   x, y, z = np.asarray(path.x), np.asarray(path.y), np.asarray(path.z) + z_off
 | |
|   pts = calibration.car_space_to_bb(x, y, z)
 | |
|   pts = np.round(pts).astype(int)
 | |
| 
 | |
|   # draw lidar path point on lidar
 | |
|   # find color in 8 bit
 | |
|   if lid_color is not None and top_down is not None:
 | |
|     tcolor = find_color(top_down[0], lid_color)
 | |
|     for i in range(len(x)):
 | |
|       px, py = to_topdown_pt(x[i], y[i])
 | |
|       if px != -1:
 | |
|         top_down[1][px, py] = tcolor
 | |
| 
 | |
|   height, width = img.shape[:2]
 | |
|   for x, y in pts:
 | |
|     if 1 < x < width - 1 and 1 < y < height - 1:
 | |
|       for a, b in itertools.permutations([-1, 0, -1], 2):
 | |
|         img[y + a, x + b] = color
 | |
| 
 | |
| 
 | |
| def init_plots(arr, name_to_arr_idx, plot_xlims, plot_ylims, plot_names, plot_colors, plot_styles):
 | |
|   color_palette = { "r": (1, 0, 0),
 | |
|                     "g": (0, 1, 0),
 | |
|                     "b": (0, 0, 1),
 | |
|                     "k": (0, 0, 0),
 | |
|                     "y": (1, 1, 0),
 | |
|                     "p": (0, 1, 1),
 | |
|                     "m": (1, 0, 1)}
 | |
| 
 | |
|   dpi = 90
 | |
|   fig = plt.figure(figsize=(575 / dpi, 600 / dpi), dpi=dpi)
 | |
|   canvas = FigureCanvasAgg(fig)
 | |
| 
 | |
|   fig.set_facecolor((0.2, 0.2, 0.2))
 | |
| 
 | |
|   axs = []
 | |
|   for pn in range(len(plot_ylims)):
 | |
|     ax = fig.add_subplot(len(plot_ylims), 1, len(axs)+1)
 | |
|     ax.set_xlim(plot_xlims[pn][0], plot_xlims[pn][1])
 | |
|     ax.set_ylim(plot_ylims[pn][0], plot_ylims[pn][1])
 | |
|     ax.patch.set_facecolor((0.4, 0.4, 0.4))
 | |
|     axs.append(ax)
 | |
| 
 | |
|   plots, idxs, plot_select = [], [], []
 | |
|   for i, pl_list in enumerate(plot_names):
 | |
|     for j, item in enumerate(pl_list):
 | |
|       plot, = axs[i].plot(arr[:, name_to_arr_idx[item]],
 | |
|                           label=item,
 | |
|                           color=color_palette[plot_colors[i][j]],
 | |
|                           linestyle=plot_styles[i][j])
 | |
|       plots.append(plot)
 | |
|       idxs.append(name_to_arr_idx[item])
 | |
|       plot_select.append(i)
 | |
|     axs[i].set_title(", ".join(f"{nm} ({cl})"
 | |
|                                for (nm, cl) in zip(pl_list, plot_colors[i])), fontsize=10)
 | |
|     axs[i].tick_params(axis="x", colors="white")
 | |
|     axs[i].tick_params(axis="y", colors="white")
 | |
|     axs[i].title.set_color("white")
 | |
| 
 | |
|     if i < len(plot_ylims) - 1:
 | |
|       axs[i].set_xticks([])
 | |
| 
 | |
|   canvas.draw()
 | |
| 
 | |
|   def draw_plots(arr):
 | |
|     for ax in axs:
 | |
|       ax.draw_artist(ax.patch)
 | |
|     for i in range(len(plots)):
 | |
|       plots[i].set_ydata(arr[:, idxs[i]])
 | |
|       axs[plot_select[i]].draw_artist(plots[i])
 | |
| 
 | |
|     raw_data = canvas.buffer_rgba()
 | |
|     plot_surface = pygame.image.frombuffer(raw_data, canvas.get_width_height(), "RGBA").convert()
 | |
|     return plot_surface
 | |
| 
 | |
|   return draw_plots
 | |
| 
 | |
| 
 | |
| def pygame_modules_have_loaded():
 | |
|   return pygame.display.get_init() and pygame.font.get_init()
 | |
| 
 | |
| 
 | |
| def plot_model(m, img, calibration, top_down):
 | |
|   if calibration is None or top_down is None:
 | |
|     return
 | |
| 
 | |
|   for lead in m.leadsV3:
 | |
|     if lead.prob < 0.5:
 | |
|       continue
 | |
| 
 | |
|     x, y = lead.x[0], lead.y[0]
 | |
|     x_std = lead.xStd[0]
 | |
|     x -= RADAR_TO_CAMERA
 | |
| 
 | |
|     _, py_top = to_topdown_pt(x + x_std, y)
 | |
|     px, py_bottom = to_topdown_pt(x - x_std, y)
 | |
|     top_down[1][int(round(px - 4)):int(round(px + 4)), py_top:py_bottom] = find_color(top_down[0], YELLOW)
 | |
| 
 | |
|   for path, prob, _ in zip(m.laneLines, m.laneLineProbs, m.laneLineStds):
 | |
|     color = (0, int(255 * prob), 0)
 | |
|     draw_path(path, color, img, calibration, top_down, YELLOW)
 | |
| 
 | |
|   for edge, std in zip(m.roadEdges, m.roadEdgeStds):
 | |
|     prob = max(1 - std, 0)
 | |
|     color = (int(255 * prob), 0, 0)
 | |
|     draw_path(edge, color, img, calibration, top_down, RED)
 | |
| 
 | |
|   color = (255, 0, 0)
 | |
|   draw_path(m.position, color, img, calibration, top_down, RED, 1.22)
 | |
| 
 | |
| 
 | |
| def plot_lead(rs, top_down):
 | |
|   for lead in [rs.leadOne, rs.leadTwo]:
 | |
|     if not lead.status:
 | |
|       continue
 | |
| 
 | |
|     x = lead.dRel
 | |
|     px_left, py = to_topdown_pt(x, -10)
 | |
|     px_right, _ = to_topdown_pt(x, 10)
 | |
|     top_down[1][px_left:px_right, py] = find_color(top_down[0], RED)
 | |
| 
 | |
| 
 | |
| def maybe_update_radar_points(lt, lid_overlay):
 | |
|   ar_pts = []
 | |
|   if lt is not None:
 | |
|     ar_pts = {}
 | |
|     for track in lt:
 | |
|       ar_pts[track.trackId] = [track.dRel, track.yRel, track.vRel, track.aRel, track.oncoming, track.stationary]
 | |
|   for ids, pt in ar_pts.items():
 | |
|     # negative here since radar is left positive
 | |
|     px, py = to_topdown_pt(pt[0], -pt[1])
 | |
|     if px != -1:
 | |
|       if pt[-1]:
 | |
|         color = 240
 | |
|       elif pt[-2]:
 | |
|         color = 230
 | |
|       else:
 | |
|         color = 255
 | |
|       if int(ids) == 1:
 | |
|         lid_overlay[px - 2:px + 2, py - 10:py + 10] = 100
 | |
|       else:
 | |
|         lid_overlay[px - 2:px + 2, py - 2:py + 2] = color
 | |
| 
 | |
| def get_blank_lid_overlay(UP):
 | |
|   lid_overlay = np.zeros((UP.lidar_x, UP.lidar_y), 'uint8')
 | |
|   # Draw the car.
 | |
|   lid_overlay[int(round(UP.lidar_car_x - UP.car_hwidth)):int(
 | |
|     round(UP.lidar_car_x + UP.car_hwidth)), int(round(UP.lidar_car_y -
 | |
|                                                       UP.car_front))] = UP.car_color
 | |
|   lid_overlay[int(round(UP.lidar_car_x - UP.car_hwidth)):int(
 | |
|     round(UP.lidar_car_x + UP.car_hwidth)), int(round(UP.lidar_car_y +
 | |
|                                                       UP.car_back))] = UP.car_color
 | |
|   lid_overlay[int(round(UP.lidar_car_x - UP.car_hwidth)), int(
 | |
|     round(UP.lidar_car_y - UP.car_front)):int(round(
 | |
|       UP.lidar_car_y + UP.car_back))] = UP.car_color
 | |
|   lid_overlay[int(round(UP.lidar_car_x + UP.car_hwidth)), int(
 | |
|     round(UP.lidar_car_y - UP.car_front)):int(round(
 | |
|       UP.lidar_car_y + UP.car_back))] = UP.car_color
 | |
|   return lid_overlay
 | |
| 
 |