You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
199 lines
6.7 KiB
199 lines
6.7 KiB
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008-2012 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
|
|
/*
|
|
|
|
NOTE: thes functions vave been adapted from the LDL library:
|
|
|
|
LDL Copyright (c) 2005 by Timothy A. Davis. All Rights Reserved.
|
|
|
|
LDL License:
|
|
|
|
Your use or distribution of LDL or any modified version of
|
|
LDL implies that you agree to this License.
|
|
|
|
This library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
This library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with this library; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
|
|
USA
|
|
|
|
Permission is hereby granted to use or copy this program under the
|
|
terms of the GNU LGPL, provided that the Copyright, this License,
|
|
and the Availability of the original version is retained on all copies.
|
|
User documentation of any code that uses this code or any modified
|
|
version of this code must cite the Copyright, this License, the
|
|
Availability note, and "Used by permission." Permission to modify
|
|
the code and to distribute modified code is granted, provided the
|
|
Copyright, this License, and the Availability note are retained,
|
|
and a notice that the code was modified is included.
|
|
*/
|
|
|
|
#include "../Core/util/NonMPL2.h"
|
|
|
|
#ifndef EIGEN_SIMPLICIAL_CHOLESKY_IMPL_H
|
|
#define EIGEN_SIMPLICIAL_CHOLESKY_IMPL_H
|
|
|
|
namespace Eigen {
|
|
|
|
template<typename Derived>
|
|
void SimplicialCholeskyBase<Derived>::analyzePattern_preordered(const CholMatrixType& ap, bool doLDLT)
|
|
{
|
|
const StorageIndex size = StorageIndex(ap.rows());
|
|
m_matrix.resize(size, size);
|
|
m_parent.resize(size);
|
|
m_nonZerosPerCol.resize(size);
|
|
|
|
ei_declare_aligned_stack_constructed_variable(StorageIndex, tags, size, 0);
|
|
|
|
for(StorageIndex k = 0; k < size; ++k)
|
|
{
|
|
/* L(k,:) pattern: all nodes reachable in etree from nz in A(0:k-1,k) */
|
|
m_parent[k] = -1; /* parent of k is not yet known */
|
|
tags[k] = k; /* mark node k as visited */
|
|
m_nonZerosPerCol[k] = 0; /* count of nonzeros in column k of L */
|
|
for(typename CholMatrixType::InnerIterator it(ap,k); it; ++it)
|
|
{
|
|
StorageIndex i = it.index();
|
|
if(i < k)
|
|
{
|
|
/* follow path from i to root of etree, stop at flagged node */
|
|
for(; tags[i] != k; i = m_parent[i])
|
|
{
|
|
/* find parent of i if not yet determined */
|
|
if (m_parent[i] == -1)
|
|
m_parent[i] = k;
|
|
m_nonZerosPerCol[i]++; /* L (k,i) is nonzero */
|
|
tags[i] = k; /* mark i as visited */
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* construct Lp index array from m_nonZerosPerCol column counts */
|
|
StorageIndex* Lp = m_matrix.outerIndexPtr();
|
|
Lp[0] = 0;
|
|
for(StorageIndex k = 0; k < size; ++k)
|
|
Lp[k+1] = Lp[k] + m_nonZerosPerCol[k] + (doLDLT ? 0 : 1);
|
|
|
|
m_matrix.resizeNonZeros(Lp[size]);
|
|
|
|
m_isInitialized = true;
|
|
m_info = Success;
|
|
m_analysisIsOk = true;
|
|
m_factorizationIsOk = false;
|
|
}
|
|
|
|
|
|
template<typename Derived>
|
|
template<bool DoLDLT>
|
|
void SimplicialCholeskyBase<Derived>::factorize_preordered(const CholMatrixType& ap)
|
|
{
|
|
using std::sqrt;
|
|
|
|
eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
|
|
eigen_assert(ap.rows()==ap.cols());
|
|
eigen_assert(m_parent.size()==ap.rows());
|
|
eigen_assert(m_nonZerosPerCol.size()==ap.rows());
|
|
|
|
const StorageIndex size = StorageIndex(ap.rows());
|
|
const StorageIndex* Lp = m_matrix.outerIndexPtr();
|
|
StorageIndex* Li = m_matrix.innerIndexPtr();
|
|
Scalar* Lx = m_matrix.valuePtr();
|
|
|
|
ei_declare_aligned_stack_constructed_variable(Scalar, y, size, 0);
|
|
ei_declare_aligned_stack_constructed_variable(StorageIndex, pattern, size, 0);
|
|
ei_declare_aligned_stack_constructed_variable(StorageIndex, tags, size, 0);
|
|
|
|
bool ok = true;
|
|
m_diag.resize(DoLDLT ? size : 0);
|
|
|
|
for(StorageIndex k = 0; k < size; ++k)
|
|
{
|
|
// compute nonzero pattern of kth row of L, in topological order
|
|
y[k] = 0.0; // Y(0:k) is now all zero
|
|
StorageIndex top = size; // stack for pattern is empty
|
|
tags[k] = k; // mark node k as visited
|
|
m_nonZerosPerCol[k] = 0; // count of nonzeros in column k of L
|
|
for(typename CholMatrixType::InnerIterator it(ap,k); it; ++it)
|
|
{
|
|
StorageIndex i = it.index();
|
|
if(i <= k)
|
|
{
|
|
y[i] += numext::conj(it.value()); /* scatter A(i,k) into Y (sum duplicates) */
|
|
Index len;
|
|
for(len = 0; tags[i] != k; i = m_parent[i])
|
|
{
|
|
pattern[len++] = i; /* L(k,i) is nonzero */
|
|
tags[i] = k; /* mark i as visited */
|
|
}
|
|
while(len > 0)
|
|
pattern[--top] = pattern[--len];
|
|
}
|
|
}
|
|
|
|
/* compute numerical values kth row of L (a sparse triangular solve) */
|
|
|
|
RealScalar d = numext::real(y[k]) * m_shiftScale + m_shiftOffset; // get D(k,k), apply the shift function, and clear Y(k)
|
|
y[k] = 0.0;
|
|
for(; top < size; ++top)
|
|
{
|
|
Index i = pattern[top]; /* pattern[top:n-1] is pattern of L(:,k) */
|
|
Scalar yi = y[i]; /* get and clear Y(i) */
|
|
y[i] = 0.0;
|
|
|
|
/* the nonzero entry L(k,i) */
|
|
Scalar l_ki;
|
|
if(DoLDLT)
|
|
l_ki = yi / m_diag[i];
|
|
else
|
|
yi = l_ki = yi / Lx[Lp[i]];
|
|
|
|
Index p2 = Lp[i] + m_nonZerosPerCol[i];
|
|
Index p;
|
|
for(p = Lp[i] + (DoLDLT ? 0 : 1); p < p2; ++p)
|
|
y[Li[p]] -= numext::conj(Lx[p]) * yi;
|
|
d -= numext::real(l_ki * numext::conj(yi));
|
|
Li[p] = k; /* store L(k,i) in column form of L */
|
|
Lx[p] = l_ki;
|
|
++m_nonZerosPerCol[i]; /* increment count of nonzeros in col i */
|
|
}
|
|
if(DoLDLT)
|
|
{
|
|
m_diag[k] = d;
|
|
if(d == RealScalar(0))
|
|
{
|
|
ok = false; /* failure, D(k,k) is zero */
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
Index p = Lp[k] + m_nonZerosPerCol[k]++;
|
|
Li[p] = k ; /* store L(k,k) = sqrt (d) in column k */
|
|
if(d <= RealScalar(0)) {
|
|
ok = false; /* failure, matrix is not positive definite */
|
|
break;
|
|
}
|
|
Lx[p] = sqrt(d) ;
|
|
}
|
|
}
|
|
|
|
m_info = ok ? Success : NumericalIssue;
|
|
m_factorizationIsOk = true;
|
|
}
|
|
|
|
} // end namespace Eigen
|
|
|
|
#endif // EIGEN_SIMPLICIAL_CHOLESKY_IMPL_H
|
|
|