openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

36 lines
1.3 KiB

import onnx
import onnxruntime as ort
import numpy as np
import itertools
ORT_TYPES_TO_NP_TYPES = {'tensor(float16)': np.float16, 'tensor(float)': np.float32, 'tensor(uint8)': np.uint8}
def attributeproto_fp16_to_fp32(attr):
float32_list = np.frombuffer(attr.raw_data, dtype=np.float16)
attr.data_type = 1
attr.raw_data = float32_list.astype(np.float32).tobytes()
def convert_fp16_to_fp32(model):
for i in model.graph.initializer:
if i.data_type == 10:
attributeproto_fp16_to_fp32(i)
for i in itertools.chain(model.graph.input, model.graph.output):
if i.type.tensor_type.elem_type == 10:
i.type.tensor_type.elem_type = 1
for i in model.graph.node:
if i.op_type == 'Cast' and i.attribute[0].i == 10:
i.attribute[0].i = 1
for a in i.attribute:
if hasattr(a, 't'):
if a.t.data_type == 10:
attributeproto_fp16_to_fp32(a.t)
return model.SerializeToString()
def make_onnx_cpu_runner(model_path):
options = ort.SessionOptions()
options.intra_op_num_threads = 4
options.execution_mode = ort.ExecutionMode.ORT_SEQUENTIAL
options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
model_data = convert_fp16_to_fp32(onnx.load(model_path))
return ort.InferenceSession(model_data, options, providers=['CPUExecutionProvider'])