You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							272 lines
						
					
					
						
							9.9 KiB
						
					
					
				
			
		
		
	
	
							272 lines
						
					
					
						
							9.9 KiB
						
					
					
				    read_only image2d_t input,
 | 
						|
#ifndef DEPTHWISE
 | 
						|
    short startPackedInputChannel,
 | 
						|
    short numPackedInputChannelsForGroup, short totalNumPackedInputChannels,
 | 
						|
    // typo required for API compatibility
 | 
						|
    short packedOuputChannelOffset, short totalNumPackedOutputChannels,
 | 
						|
#else
 | 
						|
    short totalNumPackedChannels,
 | 
						|
#endif
 | 
						|
    read_only image2d_t weights, __constant float *biases,
 | 
						|
    short filterSizeX, short filterSizeY,
 | 
						|
    write_only image2d_t output,
 | 
						|
    short paddingX, short paddingY, short strideX, short strideY,
 | 
						|
#ifdef SUPPORT_DILATION
 | 
						|
    short dilationX, short dilationY,
 | 
						|
#endif
 | 
						|
    short neuron, float a, float b, float min_clamp, float max_clamp,
 | 
						|
#ifndef DEPTHWISE
 | 
						|
    // note: these are not supported
 | 
						|
    __constant float *parameters, __constant float *batchNormBiases,
 | 
						|
#endif
 | 
						|
    short numOutputColumns
 | 
						|
#ifdef SUPPORT_ACCUMULATION
 | 
						|
    , short doAccumulate, read_only image2d_t accumulator
 | 
						|
#endif
 | 
						|
    ) {
 | 
						|
 | 
						|
#ifndef NUM_OUTPUTS
 | 
						|
  #define NUM_OUTPUTS 4
 | 
						|
#endif
 | 
						|
 | 
						|
  // init
 | 
						|
  const sampler_t smp = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP | CLK_FILTER_NEAREST;
 | 
						|
  short packedOutputChannel = get_global_id(0);
 | 
						|
  short startOutputColumn = mul24((short)get_global_id(1), NUM_OUTPUTS);
 | 
						|
  short outputRow = get_global_id(2);
 | 
						|
 | 
						|
#ifdef DEPTHWISE
 | 
						|
  short totalNumPackedInputChannels = totalNumPackedChannels;
 | 
						|
  short totalNumPackedOutputChannels = totalNumPackedChannels;
 | 
						|
  short startPackedInputChannel = packedOutputChannel;
 | 
						|
#endif
 | 
						|
 | 
						|
  short startX = mad24(mad24(startOutputColumn, strideX, -paddingX), totalNumPackedInputChannels, startPackedInputChannel);
 | 
						|
  short strideWithChannels = mul24(strideX, totalNumPackedInputChannels);
 | 
						|
 | 
						|
  float4 outputValues[NUM_OUTPUTS];
 | 
						|
  for (short i = 0; i < NUM_OUTPUTS; ++i) {
 | 
						|
    outputValues[i] = (float4)(0, 0, 0, 0);
 | 
						|
  }
 | 
						|
 | 
						|
  int2 inputLocation;
 | 
						|
  inputLocation.y = mad24(outputRow, strideY, -paddingY);
 | 
						|
 | 
						|
  int2 weightLocation;
 | 
						|
  weightLocation.x = 0;
 | 
						|
  weightLocation.y = packedOutputChannel;
 | 
						|
 | 
						|
#ifdef DEPTHWISE
 | 
						|
 | 
						|
#ifdef SUPPORT_DILATION
 | 
						|
 | 
						|
  // depthwise convolution
 | 
						|
  for (short rfRow = 0; rfRow < filterSizeY; ++rfRow) {
 | 
						|
    for (short rfColumn = 0; rfColumn < filterSizeX; ++rfColumn) {
 | 
						|
      short dilatedStepX = mul24(totalNumPackedChannels, dilationX);
 | 
						|
      inputLocation.x = mad24(rfColumn, dilatedStepX, startX);
 | 
						|
      float4 inputValues[4];
 | 
						|
      for (short i = 0; i < 4; ++i) {
 | 
						|
        inputValues[i] = read_imagef(input, smp, inputLocation);
 | 
						|
        inputLocation.x += strideWithChannels;
 | 
						|
      }
 | 
						|
      float4 weightValues = read_imagef(weights, smp, weightLocation);
 | 
						|
      ++weightLocation.x;
 | 
						|
      outputValues[0] += inputValues[0] * weightValues;
 | 
						|
      outputValues[1] += inputValues[1] * weightValues;
 | 
						|
      outputValues[2] += inputValues[2] * weightValues;
 | 
						|
      outputValues[3] += inputValues[3] * weightValues;
 | 
						|
    }
 | 
						|
    inputLocation.y += dilationY;
 | 
						|
  }
 | 
						|
 | 
						|
#else
 | 
						|
 | 
						|
  // depthwise unstrided convolution
 | 
						|
  for (short rfRow = 0; rfRow < filterSizeY; ++rfRow) {
 | 
						|
    float4 inputValues[4];
 | 
						|
    inputLocation.x = startX;
 | 
						|
    for (short i = 1; i < 4; ++i) {
 | 
						|
      inputValues[i] = read_imagef(input, smp, inputLocation);
 | 
						|
      inputLocation.x += totalNumPackedOutputChannels;
 | 
						|
    }
 | 
						|
    for (short rfColumn = 0; rfColumn < filterSizeX; ++rfColumn) {
 | 
						|
      inputValues[0] = inputValues[1];
 | 
						|
      inputValues[1] = inputValues[2];
 | 
						|
      inputValues[2] = inputValues[3];
 | 
						|
      inputValues[3] = read_imagef(input, smp, inputLocation);
 | 
						|
      inputLocation.x += totalNumPackedChannels;
 | 
						|
      float4 weightValues = read_imagef(weights, smp, weightLocation);
 | 
						|
      ++weightLocation.x;
 | 
						|
      outputValues[0] += inputValues[0] * weightValues;
 | 
						|
      outputValues[1] += inputValues[1] * weightValues;
 | 
						|
      outputValues[2] += inputValues[2] * weightValues;
 | 
						|
      outputValues[3] += inputValues[3] * weightValues;
 | 
						|
    }
 | 
						|
    ++inputLocation.y;
 | 
						|
  }
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
#elif defined(ONLY_1X1_CONV)
 | 
						|
 | 
						|
  // 1x1 convolution
 | 
						|
  short endPackedInputChannel = startPackedInputChannel + numPackedInputChannelsForGroup;
 | 
						|
  for (short packedInputChannel = startPackedInputChannel; packedInputChannel < endPackedInputChannel; ++packedInputChannel) {
 | 
						|
    float4 weightValues[4];
 | 
						|
    for (short outChIdx = 0; outChIdx < 4; ++outChIdx) {
 | 
						|
      weightValues[outChIdx] = read_imagef(weights, smp, weightLocation);
 | 
						|
      ++weightLocation.x;
 | 
						|
    }
 | 
						|
 | 
						|
    inputLocation.x = startX + packedInputChannel;
 | 
						|
    float4 inputValues[NUM_OUTPUTS];
 | 
						|
    for (short i = 0; i < NUM_OUTPUTS; ++i) {
 | 
						|
      inputValues[i] = read_imagef(input, smp, inputLocation);
 | 
						|
      inputLocation.x += strideWithChannels;
 | 
						|
    }
 | 
						|
 | 
						|
    for (short i = 0; i < NUM_OUTPUTS; ++i) {
 | 
						|
      float4 curOutputValues = outputValues[i];
 | 
						|
      curOutputValues.x += inputValues[i].x * weightValues[0].x;
 | 
						|
      curOutputValues.x += inputValues[i].y * weightValues[0].y;
 | 
						|
      curOutputValues.x += inputValues[i].z * weightValues[0].z;
 | 
						|
      curOutputValues.x += inputValues[i].w * weightValues[0].w;
 | 
						|
      curOutputValues.y += inputValues[i].x * weightValues[1].x;
 | 
						|
      curOutputValues.y += inputValues[i].y * weightValues[1].y;
 | 
						|
      curOutputValues.y += inputValues[i].z * weightValues[1].z;
 | 
						|
      curOutputValues.y += inputValues[i].w * weightValues[1].w;
 | 
						|
      curOutputValues.z += inputValues[i].x * weightValues[2].x;
 | 
						|
      curOutputValues.z += inputValues[i].y * weightValues[2].y;
 | 
						|
      curOutputValues.z += inputValues[i].z * weightValues[2].z;
 | 
						|
      curOutputValues.z += inputValues[i].w * weightValues[2].w;
 | 
						|
      curOutputValues.w += inputValues[i].x * weightValues[3].x;
 | 
						|
      curOutputValues.w += inputValues[i].y * weightValues[3].y;
 | 
						|
      curOutputValues.w += inputValues[i].z * weightValues[3].z;
 | 
						|
      curOutputValues.w += inputValues[i].w * weightValues[3].w;
 | 
						|
      outputValues[i] = curOutputValues;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  packedOutputChannel += packedOuputChannelOffset;
 | 
						|
 | 
						|
#else
 | 
						|
 | 
						|
  // normal convolution
 | 
						|
  for (short rfRow = 0; rfRow < filterSizeY; ++rfRow) {
 | 
						|
    for (short packedInputChannel = 0; packedInputChannel < numPackedInputChannelsForGroup; ++packedInputChannel) {
 | 
						|
      short startXForChannel = startX + packedInputChannel;
 | 
						|
      for (short rfColumn = 0; rfColumn < filterSizeX; ++rfColumn) {
 | 
						|
 | 
						|
        float4 weightValues[4];
 | 
						|
        for (short outChIdx = 0; outChIdx < 4; ++outChIdx) {
 | 
						|
          weightValues[outChIdx] = read_imagef(weights, smp, weightLocation);
 | 
						|
          ++weightLocation.x;
 | 
						|
        }
 | 
						|
 | 
						|
#ifdef SUPPORT_DILATION
 | 
						|
        short dilatedStepX = mul24(totalNumPackedInputChannels, dilationX);
 | 
						|
        inputLocation.x = mad24(rfColumn, dilatedStepX, startXForChannel);
 | 
						|
#else
 | 
						|
        inputLocation.x = mad24(rfColumn, totalNumPackedInputChannels, startXForChannel);
 | 
						|
#endif
 | 
						|
        float4 inputValues[NUM_OUTPUTS];
 | 
						|
        for (short i = 0; i < NUM_OUTPUTS; ++i) {
 | 
						|
          inputValues[i] = read_imagef(input, smp, inputLocation);
 | 
						|
          inputLocation.x += strideWithChannels;
 | 
						|
        }
 | 
						|
        for (short i = 0; i < NUM_OUTPUTS; ++i) {
 | 
						|
          float4 curOutputValues = outputValues[i];
 | 
						|
          curOutputValues.x += inputValues[i].x * weightValues[0].x;
 | 
						|
          curOutputValues.x += inputValues[i].y * weightValues[0].y;
 | 
						|
          curOutputValues.x += inputValues[i].z * weightValues[0].z;
 | 
						|
          curOutputValues.x += inputValues[i].w * weightValues[0].w;
 | 
						|
          curOutputValues.y += inputValues[i].x * weightValues[1].x;
 | 
						|
          curOutputValues.y += inputValues[i].y * weightValues[1].y;
 | 
						|
          curOutputValues.y += inputValues[i].z * weightValues[1].z;
 | 
						|
          curOutputValues.y += inputValues[i].w * weightValues[1].w;
 | 
						|
          curOutputValues.z += inputValues[i].x * weightValues[2].x;
 | 
						|
          curOutputValues.z += inputValues[i].y * weightValues[2].y;
 | 
						|
          curOutputValues.z += inputValues[i].z * weightValues[2].z;
 | 
						|
          curOutputValues.z += inputValues[i].w * weightValues[2].w;
 | 
						|
          curOutputValues.w += inputValues[i].x * weightValues[3].x;
 | 
						|
          curOutputValues.w += inputValues[i].y * weightValues[3].y;
 | 
						|
          curOutputValues.w += inputValues[i].z * weightValues[3].z;
 | 
						|
          curOutputValues.w += inputValues[i].w * weightValues[3].w;
 | 
						|
          outputValues[i] = curOutputValues;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
#ifdef SUPPORT_DILATION
 | 
						|
    inputLocation.y += dilationY;
 | 
						|
#else
 | 
						|
    ++inputLocation.y;
 | 
						|
#endif
 | 
						|
  }
 | 
						|
  packedOutputChannel += packedOuputChannelOffset;
 | 
						|
#endif
 | 
						|
 | 
						|
  // bias
 | 
						|
  short outputChannel = mul24(packedOutputChannel, 4);
 | 
						|
  float4 biasValues = vload4(0, biases + outputChannel);
 | 
						|
  for (short i = 0; i < NUM_OUTPUTS; ++i) {
 | 
						|
    outputValues[i] += biasValues;
 | 
						|
  }
 | 
						|
 | 
						|
#ifdef SUPPORT_ACCUMULATION
 | 
						|
  // accumulate
 | 
						|
  if (doAccumulate) {
 | 
						|
    int2 outputLocation;
 | 
						|
    short outputColumn = startOutputColumn;
 | 
						|
    outputLocation.y = outputRow;
 | 
						|
    for (short i = 0; i < NUM_OUTPUTS; ++i) {
 | 
						|
      outputLocation.x = mad24(outputColumn, totalNumPackedOutputChannels, packedOutputChannel);
 | 
						|
      if (outputColumn < numOutputColumns) {
 | 
						|
        outputValues[i] += read_imagef(accumulator, smp, outputLocation);
 | 
						|
      }
 | 
						|
      ++outputColumn;
 | 
						|
    }
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  // activation
 | 
						|
  switch (neuron) {
 | 
						|
  case 1:
 | 
						|
    for (short i = 0; i < NUM_OUTPUTS; ++i) {
 | 
						|
      outputValues[i] = max(outputValues[i], 0.0f);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case 2:
 | 
						|
    for (short i = 0; i < NUM_OUTPUTS; ++i) {
 | 
						|
      outputValues[i] = a * tanh(b * outputValues[i]);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case 3:
 | 
						|
    for (short i = 0; i < NUM_OUTPUTS; ++i) {
 | 
						|
      outputValues[i] = native_recip(1.0f + native_exp(-a * outputValues[i] + b));
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case 4:
 | 
						|
    for (short i = 0; i < NUM_OUTPUTS; ++i) {
 | 
						|
      outputValues[i] = max(outputValues[i], min_clamp);
 | 
						|
      outputValues[i] = min(outputValues[i], max_clamp);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case 5:
 | 
						|
    for (short i = 0; i < NUM_OUTPUTS; ++i) {
 | 
						|
      outputValues[i] = max(outputValues[i], 0.0f) + a * (native_exp(min(outputValues[i], 0.0f)) - 1.0f);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // output
 | 
						|
  int2 outputLocation;
 | 
						|
  short outputColumn = startOutputColumn;
 | 
						|
  outputLocation.y = outputRow;
 | 
						|
  for (short i = 0; i < NUM_OUTPUTS; ++i) {
 | 
						|
    outputLocation.x = mad24(outputColumn, totalNumPackedOutputChannels, packedOutputChannel);
 | 
						|
    if (outputColumn < numOutputColumns) {
 | 
						|
      write_imagef(output, outputLocation, outputValues[i]);
 | 
						|
    }
 | 
						|
    ++outputColumn;
 | 
						|
  }
 | 
						|
}
 | 
						|
 |