openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

184 lines
6.2 KiB

/*
* Copyright 2019 Gianluca Frison, Dimitris Kouzoupis, Robin Verschueren,
* Andrea Zanelli, Niels van Duijkeren, Jonathan Frey, Tommaso Sartor,
* Branimir Novoselnik, Rien Quirynen, Rezart Qelibari, Dang Doan,
* Jonas Koenemann, Yutao Chen, Tobias Schöls, Jonas Schlagenhauf, Moritz Diehl
*
* This file is part of acados.
*
* The 2-Clause BSD License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.;
*/
// standard
#include <stdio.h>
#include <stdlib.h>
// acados
#include "acados/utils/print.h"
#include "acados/utils/math.h"
#include "acados_c/ocp_nlp_interface.h"
#include "acados_solver_{{ model.name }}.h"
// mex
#include "mex.h"
/* auxilary mex */
// prints a matrix in column-major format (exponential notation)
void MEX_print_exp_mat(int m, int n, double *A, int lda)
{
for (int i=0; i<m; i++)
{
for (int j=0; j<n; j++)
{
mexPrintf("%e\t", A[i+lda*j]);
}
mexPrintf("\n");
}
mexPrintf("\n");
}
// prints the transposed of a matrix in column-major format (exponential notation)
void MEX_print_exp_tran_mat(int row, int col, double *A, int lda)
{
for (int j=0; j<col; j++)
{
for (int i=0; i<row; i++)
{
mexPrintf("%e\t", A[i+lda*j]);
}
mexPrintf("\n");
}
mexPrintf("\n");
}
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])
{
int status = 0;
status = {{ model.name }}_acados_create();
if (status)
{
mexPrintf("{{ model.name }}_acados_create() returned status %d. Exiting.\n", status);
exit(1);
}
// get pointers to nlp solver related objects
ocp_nlp_config *nlp_config = {{ model.name }}_acados_get_nlp_config();
ocp_nlp_dims *nlp_dims = {{ model.name }}_acados_get_nlp_dims();
ocp_nlp_in *nlp_in = {{ model.name }}_acados_get_nlp_in();
ocp_nlp_out *nlp_out = {{ model.name }}_acados_get_nlp_out();
ocp_nlp_solver *nlp_solver = {{ model.name }}_acados_get_nlp_solver();
void *nlp_opts = {{ model.name }}_acados_get_nlp_opts();
// initial condition
int idxbx0[{{ dims.nbx_0 }}];
{% for i in range(end=dims.nbx_0) %}
idxbx0[{{ i }}] = {{ constraints.idxbx_0[i] }};
{%- endfor %}
double lbx0[{{ dims.nbx_0 }}];
double ubx0[{{ dims.nbx_0 }}];
{% for i in range(end=dims.nbx_0) %}
lbx0[{{ i }}] = {{ constraints.lbx_0[i] }};
ubx0[{{ i }}] = {{ constraints.ubx_0[i] }};
{%- endfor %}
ocp_nlp_constraints_model_set(nlp_config, nlp_dims, nlp_in, 0, "idxbx", idxbx0);
ocp_nlp_constraints_model_set(nlp_config, nlp_dims, nlp_in, 0, "lbx", lbx0);
ocp_nlp_constraints_model_set(nlp_config, nlp_dims, nlp_in, 0, "ubx", ubx0);
// initialization for state values
double x_init[{{ dims.nx }}];
{%- for i in range(end=dims.nx) %}
x_init[{{ i }}] = 0.0;
{%- endfor %}
// initial value for control input
double u0[{{ dims.nu }}];
{%- for i in range(end=dims.nu) %}
u0[{{ i }}] = 0.0;
{%- endfor %}
// prepare evaluation
int NTIMINGS = 10;
double min_time = 1e12;
double kkt_norm_inf;
double elapsed_time;
int sqp_iter;
double xtraj[{{ dims.nx }} * ({{ dims.N }}+1)];
double utraj[{{ dims.nu }} * ({{ dims.N }})];
// solve ocp in loop
for (int ii = 0; ii < NTIMINGS; ii++)
{
// initialize primal solution
for (int i = 0; i <= nlp_dims->N; i++)
{
ocp_nlp_out_set(nlp_config, nlp_dims, nlp_out, i, "x", x_init);
ocp_nlp_out_set(nlp_config, nlp_dims, nlp_out, i, "u", u0);
}
status = {{ model.name }}_acados_solve();
ocp_nlp_get(nlp_config, nlp_solver, "time_tot", &elapsed_time);
min_time = MIN(elapsed_time, min_time);
}
/* print solution and statistics */
for (int ii = 0; ii <= nlp_dims->N; ii++)
ocp_nlp_out_get(nlp_config, nlp_dims, nlp_out, ii, "x", &xtraj[ii*{{ dims.nx }}]);
for (int ii = 0; ii < nlp_dims->N; ii++)
ocp_nlp_out_get(nlp_config, nlp_dims, nlp_out, ii, "u", &utraj[ii*{{ dims.nu }}]);
mexPrintf("\n--- xtraj ---\n");
MEX_print_exp_tran_mat( {{ dims.nx }}, {{ dims.N }}+1, xtraj, {{ dims.nx }} );
mexPrintf("\n--- utraj ---\n");
MEX_print_exp_tran_mat( {{ dims.nu }}, {{ dims.N }}, utraj, {{ dims.nu }} );
mexPrintf("\nsolved ocp %d times, solution printed above\n\n", NTIMINGS);
if (status == ACADOS_SUCCESS)
mexPrintf("{{ model.name }}_acados_solve(): SUCCESS!\n");
else
mexPrintf("{{ model.name }}_acados_solve() failed with status %d.\n", status);
// get solution
ocp_nlp_out_get(nlp_config, nlp_dims, nlp_out, 0, "kkt_norm_inf", &kkt_norm_inf);
ocp_nlp_get(nlp_config, nlp_solver, "sqp_iter", &sqp_iter);
mexPrintf("\nSolver info:\n");
mexPrintf(" SQP iterations %2d\n minimum time for 1 solve %f [ms]\n KKT %e\n",
sqp_iter, min_time*1000, kkt_norm_inf);
// free solver
status = {{ model.name }}_acados_free();
if (status)
{
mexPrintf("{{ model.name }}_acados_free() returned status %d.\n", status);
}
return;
}