You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
184 lines
6.2 KiB
184 lines
6.2 KiB
/*
|
|
* Copyright 2019 Gianluca Frison, Dimitris Kouzoupis, Robin Verschueren,
|
|
* Andrea Zanelli, Niels van Duijkeren, Jonathan Frey, Tommaso Sartor,
|
|
* Branimir Novoselnik, Rien Quirynen, Rezart Qelibari, Dang Doan,
|
|
* Jonas Koenemann, Yutao Chen, Tobias Schöls, Jonas Schlagenhauf, Moritz Diehl
|
|
*
|
|
* This file is part of acados.
|
|
*
|
|
* The 2-Clause BSD License
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.;
|
|
*/
|
|
|
|
|
|
// standard
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
// acados
|
|
#include "acados/utils/print.h"
|
|
#include "acados/utils/math.h"
|
|
#include "acados_c/ocp_nlp_interface.h"
|
|
#include "acados_solver_{{ model.name }}.h"
|
|
// mex
|
|
#include "mex.h"
|
|
|
|
/* auxilary mex */
|
|
// prints a matrix in column-major format (exponential notation)
|
|
void MEX_print_exp_mat(int m, int n, double *A, int lda)
|
|
{
|
|
for (int i=0; i<m; i++)
|
|
{
|
|
for (int j=0; j<n; j++)
|
|
{
|
|
mexPrintf("%e\t", A[i+lda*j]);
|
|
}
|
|
mexPrintf("\n");
|
|
}
|
|
mexPrintf("\n");
|
|
}
|
|
|
|
// prints the transposed of a matrix in column-major format (exponential notation)
|
|
void MEX_print_exp_tran_mat(int row, int col, double *A, int lda)
|
|
{
|
|
for (int j=0; j<col; j++)
|
|
{
|
|
for (int i=0; i<row; i++)
|
|
{
|
|
mexPrintf("%e\t", A[i+lda*j]);
|
|
}
|
|
mexPrintf("\n");
|
|
}
|
|
mexPrintf("\n");
|
|
}
|
|
|
|
|
|
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])
|
|
{
|
|
|
|
int status = 0;
|
|
status = {{ model.name }}_acados_create();
|
|
|
|
if (status)
|
|
{
|
|
mexPrintf("{{ model.name }}_acados_create() returned status %d. Exiting.\n", status);
|
|
exit(1);
|
|
}
|
|
|
|
|
|
// get pointers to nlp solver related objects
|
|
ocp_nlp_config *nlp_config = {{ model.name }}_acados_get_nlp_config();
|
|
ocp_nlp_dims *nlp_dims = {{ model.name }}_acados_get_nlp_dims();
|
|
ocp_nlp_in *nlp_in = {{ model.name }}_acados_get_nlp_in();
|
|
ocp_nlp_out *nlp_out = {{ model.name }}_acados_get_nlp_out();
|
|
ocp_nlp_solver *nlp_solver = {{ model.name }}_acados_get_nlp_solver();
|
|
void *nlp_opts = {{ model.name }}_acados_get_nlp_opts();
|
|
|
|
// initial condition
|
|
int idxbx0[{{ dims.nbx_0 }}];
|
|
{% for i in range(end=dims.nbx_0) %}
|
|
idxbx0[{{ i }}] = {{ constraints.idxbx_0[i] }};
|
|
{%- endfor %}
|
|
|
|
double lbx0[{{ dims.nbx_0 }}];
|
|
double ubx0[{{ dims.nbx_0 }}];
|
|
{% for i in range(end=dims.nbx_0) %}
|
|
lbx0[{{ i }}] = {{ constraints.lbx_0[i] }};
|
|
ubx0[{{ i }}] = {{ constraints.ubx_0[i] }};
|
|
{%- endfor %}
|
|
|
|
ocp_nlp_constraints_model_set(nlp_config, nlp_dims, nlp_in, 0, "idxbx", idxbx0);
|
|
ocp_nlp_constraints_model_set(nlp_config, nlp_dims, nlp_in, 0, "lbx", lbx0);
|
|
ocp_nlp_constraints_model_set(nlp_config, nlp_dims, nlp_in, 0, "ubx", ubx0);
|
|
|
|
// initialization for state values
|
|
double x_init[{{ dims.nx }}];
|
|
{%- for i in range(end=dims.nx) %}
|
|
x_init[{{ i }}] = 0.0;
|
|
{%- endfor %}
|
|
|
|
// initial value for control input
|
|
double u0[{{ dims.nu }}];
|
|
{%- for i in range(end=dims.nu) %}
|
|
u0[{{ i }}] = 0.0;
|
|
{%- endfor %}
|
|
|
|
// prepare evaluation
|
|
int NTIMINGS = 10;
|
|
double min_time = 1e12;
|
|
double kkt_norm_inf;
|
|
double elapsed_time;
|
|
int sqp_iter;
|
|
|
|
double xtraj[{{ dims.nx }} * ({{ dims.N }}+1)];
|
|
double utraj[{{ dims.nu }} * ({{ dims.N }})];
|
|
|
|
// solve ocp in loop
|
|
for (int ii = 0; ii < NTIMINGS; ii++)
|
|
{
|
|
// initialize primal solution
|
|
for (int i = 0; i <= nlp_dims->N; i++)
|
|
{
|
|
ocp_nlp_out_set(nlp_config, nlp_dims, nlp_out, i, "x", x_init);
|
|
ocp_nlp_out_set(nlp_config, nlp_dims, nlp_out, i, "u", u0);
|
|
}
|
|
status = {{ model.name }}_acados_solve();
|
|
ocp_nlp_get(nlp_config, nlp_solver, "time_tot", &elapsed_time);
|
|
min_time = MIN(elapsed_time, min_time);
|
|
}
|
|
|
|
/* print solution and statistics */
|
|
for (int ii = 0; ii <= nlp_dims->N; ii++)
|
|
ocp_nlp_out_get(nlp_config, nlp_dims, nlp_out, ii, "x", &xtraj[ii*{{ dims.nx }}]);
|
|
for (int ii = 0; ii < nlp_dims->N; ii++)
|
|
ocp_nlp_out_get(nlp_config, nlp_dims, nlp_out, ii, "u", &utraj[ii*{{ dims.nu }}]);
|
|
|
|
mexPrintf("\n--- xtraj ---\n");
|
|
MEX_print_exp_tran_mat( {{ dims.nx }}, {{ dims.N }}+1, xtraj, {{ dims.nx }} );
|
|
mexPrintf("\n--- utraj ---\n");
|
|
MEX_print_exp_tran_mat( {{ dims.nu }}, {{ dims.N }}, utraj, {{ dims.nu }} );
|
|
|
|
mexPrintf("\nsolved ocp %d times, solution printed above\n\n", NTIMINGS);
|
|
|
|
if (status == ACADOS_SUCCESS)
|
|
mexPrintf("{{ model.name }}_acados_solve(): SUCCESS!\n");
|
|
else
|
|
mexPrintf("{{ model.name }}_acados_solve() failed with status %d.\n", status);
|
|
|
|
// get solution
|
|
ocp_nlp_out_get(nlp_config, nlp_dims, nlp_out, 0, "kkt_norm_inf", &kkt_norm_inf);
|
|
ocp_nlp_get(nlp_config, nlp_solver, "sqp_iter", &sqp_iter);
|
|
|
|
mexPrintf("\nSolver info:\n");
|
|
mexPrintf(" SQP iterations %2d\n minimum time for 1 solve %f [ms]\n KKT %e\n",
|
|
sqp_iter, min_time*1000, kkt_norm_inf);
|
|
|
|
// free solver
|
|
status = {{ model.name }}_acados_free();
|
|
if (status)
|
|
{
|
|
mexPrintf("{{ model.name }}_acados_free() returned status %d.\n", status);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|