You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							411 lines
						
					
					
						
							18 KiB
						
					
					
				
			
		
		
	
	
							411 lines
						
					
					
						
							18 KiB
						
					
					
				| #!/usr/bin/env python3
 | |
| import os
 | |
| from openpilot.system.hardware import TICI
 | |
| os.environ['DEV'] = 'QCOM' if TICI else 'CPU'
 | |
| USBGPU = "USBGPU" in os.environ
 | |
| if USBGPU:
 | |
|   os.environ['DEV'] = 'AMD'
 | |
|   os.environ['AMD_IFACE'] = 'USB'
 | |
| from tinygrad.tensor import Tensor
 | |
| from tinygrad.dtype import dtypes
 | |
| import time
 | |
| import pickle
 | |
| import numpy as np
 | |
| import cereal.messaging as messaging
 | |
| from cereal import car, log
 | |
| from pathlib import Path
 | |
| from cereal.messaging import PubMaster, SubMaster
 | |
| from msgq.visionipc import VisionIpcClient, VisionStreamType, VisionBuf
 | |
| from opendbc.car.car_helpers import get_demo_car_params
 | |
| from openpilot.common.swaglog import cloudlog
 | |
| from openpilot.common.params import Params
 | |
| from openpilot.common.filter_simple import FirstOrderFilter
 | |
| from openpilot.common.realtime import config_realtime_process, DT_MDL
 | |
| from openpilot.common.transformations.camera import DEVICE_CAMERAS
 | |
| from openpilot.common.transformations.model import get_warp_matrix
 | |
| from openpilot.selfdrive.controls.lib.desire_helper import DesireHelper
 | |
| from openpilot.selfdrive.controls.lib.drive_helpers import get_accel_from_plan, smooth_value, get_curvature_from_plan
 | |
| from openpilot.selfdrive.modeld.parse_model_outputs import Parser
 | |
| from openpilot.selfdrive.modeld.fill_model_msg import fill_model_msg, fill_pose_msg, PublishState
 | |
| from openpilot.selfdrive.modeld.constants import ModelConstants, Plan
 | |
| from openpilot.selfdrive.modeld.models.commonmodel_pyx import DrivingModelFrame, CLContext
 | |
| from openpilot.selfdrive.modeld.runners.tinygrad_helpers import qcom_tensor_from_opencl_address
 | |
| 
 | |
| 
 | |
| PROCESS_NAME = "selfdrive.modeld.modeld"
 | |
| SEND_RAW_PRED = os.getenv('SEND_RAW_PRED')
 | |
| 
 | |
| VISION_PKL_PATH = Path(__file__).parent / 'models/driving_vision_tinygrad.pkl'
 | |
| POLICY_PKL_PATH = Path(__file__).parent / 'models/driving_policy_tinygrad.pkl'
 | |
| VISION_METADATA_PATH = Path(__file__).parent / 'models/driving_vision_metadata.pkl'
 | |
| POLICY_METADATA_PATH = Path(__file__).parent / 'models/driving_policy_metadata.pkl'
 | |
| 
 | |
| LAT_SMOOTH_SECONDS = 0.1
 | |
| LONG_SMOOTH_SECONDS = 0.3
 | |
| MIN_LAT_CONTROL_SPEED = 0.3
 | |
| 
 | |
| 
 | |
| def get_action_from_model(model_output: dict[str, np.ndarray], prev_action: log.ModelDataV2.Action,
 | |
|                           lat_action_t: float, long_action_t: float, v_ego: float) -> log.ModelDataV2.Action:
 | |
|     plan = model_output['plan'][0]
 | |
|     desired_accel, should_stop = get_accel_from_plan(plan[:,Plan.VELOCITY][:,0],
 | |
|                                                      plan[:,Plan.ACCELERATION][:,0],
 | |
|                                                      ModelConstants.T_IDXS,
 | |
|                                                      action_t=long_action_t)
 | |
|     desired_accel = smooth_value(desired_accel, prev_action.desiredAcceleration, LONG_SMOOTH_SECONDS)
 | |
| 
 | |
|     desired_curvature = get_curvature_from_plan(plan[:,Plan.T_FROM_CURRENT_EULER][:,2],
 | |
|                                                 plan[:,Plan.ORIENTATION_RATE][:,2],
 | |
|                                                 ModelConstants.T_IDXS,
 | |
|                                                 v_ego,
 | |
|                                                 lat_action_t)
 | |
|     if v_ego > MIN_LAT_CONTROL_SPEED:
 | |
|       desired_curvature = smooth_value(desired_curvature, prev_action.desiredCurvature, LAT_SMOOTH_SECONDS)
 | |
|     else:
 | |
|       desired_curvature = prev_action.desiredCurvature
 | |
| 
 | |
|     return log.ModelDataV2.Action(desiredCurvature=float(desired_curvature),
 | |
|                                   desiredAcceleration=float(desired_accel),
 | |
|                                   shouldStop=bool(should_stop))
 | |
| 
 | |
| class FrameMeta:
 | |
|   frame_id: int = 0
 | |
|   timestamp_sof: int = 0
 | |
|   timestamp_eof: int = 0
 | |
| 
 | |
|   def __init__(self, vipc=None):
 | |
|     if vipc is not None:
 | |
|       self.frame_id, self.timestamp_sof, self.timestamp_eof = vipc.frame_id, vipc.timestamp_sof, vipc.timestamp_eof
 | |
| 
 | |
| class InputQueues:
 | |
|   def __init__ (self, model_fps, env_fps, n_frames_input):
 | |
|     assert env_fps % model_fps == 0
 | |
|     assert env_fps >= model_fps
 | |
|     self.model_fps = model_fps
 | |
|     self.env_fps = env_fps
 | |
|     self.n_frames_input = n_frames_input
 | |
| 
 | |
|     self.dtypes = {}
 | |
|     self.shapes = {}
 | |
|     self.q = {}
 | |
| 
 | |
|   def update_dtypes_and_shapes(self, input_dtypes, input_shapes) -> None:
 | |
|     self.dtypes.update(input_dtypes)
 | |
|     if self.env_fps == self.model_fps:
 | |
|       self.shapes.update(input_shapes)
 | |
|     else:
 | |
|       for k in input_shapes:
 | |
|         shape = list(input_shapes[k])
 | |
|         if 'img' in k:
 | |
|           n_channels = shape[1] // self.n_frames_input
 | |
|           shape[1] = (self.env_fps // self.model_fps + (self.n_frames_input - 1)) * n_channels
 | |
|         else:
 | |
|           shape[1] = (self.env_fps // self.model_fps) * shape[1]
 | |
|         self.shapes[k] = tuple(shape)
 | |
| 
 | |
|   def reset(self) -> None:
 | |
|     self.q = {k: np.zeros(self.shapes[k], dtype=self.dtypes[k]) for k in self.dtypes.keys()}
 | |
| 
 | |
|   def enqueue(self, inputs:dict[str, np.ndarray]) -> None:
 | |
|     for k in inputs.keys():
 | |
|       if inputs[k].dtype != self.dtypes[k]:
 | |
|         raise ValueError(f'supplied input <{k}({inputs[k].dtype})> has wrong dtype, expected {self.dtypes[k]}')
 | |
|       input_shape = list(self.shapes[k])
 | |
|       input_shape[1] = -1
 | |
|       single_input = inputs[k].reshape(tuple(input_shape))
 | |
|       sz = single_input.shape[1]
 | |
|       self.q[k][:,:-sz] = self.q[k][:,sz:]
 | |
|       self.q[k][:,-sz:] = single_input
 | |
| 
 | |
|   def get(self, *names) -> dict[str, np.ndarray]:
 | |
|     if self.env_fps == self.model_fps:
 | |
|       return {k: self.q[k] for k in names}
 | |
|     else:
 | |
|       out = {}
 | |
|       for k in names:
 | |
|         shape = self.shapes[k]
 | |
|         if 'img' in k:
 | |
|           n_channels = shape[1] // (self.env_fps // self.model_fps + (self.n_frames_input - 1))
 | |
|           out[k] = np.concatenate([self.q[k][:, s:s+n_channels] for s in np.linspace(0, shape[1] - n_channels, self.n_frames_input, dtype=int)], axis=1)
 | |
|         elif 'pulse' in k:
 | |
|           # any pulse within interval counts
 | |
|           out[k] = self.q[k].reshape((shape[0], shape[1] * self.model_fps // self.env_fps, self.env_fps // self.model_fps, -1)).max(axis=2)
 | |
|         else:
 | |
|           idxs = np.arange(-1, -shape[1], -self.env_fps // self.model_fps)[::-1]
 | |
|           out[k] = self.q[k][:, idxs]
 | |
|       return out
 | |
| 
 | |
| class ModelState:
 | |
|   frames: dict[str, DrivingModelFrame]
 | |
|   inputs: dict[str, np.ndarray]
 | |
|   output: np.ndarray
 | |
|   prev_desire: np.ndarray  # for tracking the rising edge of the pulse
 | |
| 
 | |
|   def __init__(self, context: CLContext):
 | |
|     with open(VISION_METADATA_PATH, 'rb') as f:
 | |
|       vision_metadata = pickle.load(f)
 | |
|       self.vision_input_shapes =  vision_metadata['input_shapes']
 | |
|       self.vision_input_names = list(self.vision_input_shapes.keys())
 | |
|       self.vision_output_slices = vision_metadata['output_slices']
 | |
|       vision_output_size = vision_metadata['output_shapes']['outputs'][1]
 | |
| 
 | |
|     with open(POLICY_METADATA_PATH, 'rb') as f:
 | |
|       policy_metadata = pickle.load(f)
 | |
|       self.policy_input_shapes =  policy_metadata['input_shapes']
 | |
|       self.policy_output_slices = policy_metadata['output_slices']
 | |
|       policy_output_size = policy_metadata['output_shapes']['outputs'][1]
 | |
| 
 | |
|     self.frames = {name: DrivingModelFrame(context, ModelConstants.MODEL_RUN_FREQ//ModelConstants.MODEL_CONTEXT_FREQ) for name in self.vision_input_names}
 | |
|     self.prev_desire = np.zeros(ModelConstants.DESIRE_LEN, dtype=np.float32)
 | |
| 
 | |
|     # policy inputs
 | |
|     self.numpy_inputs = {k: np.zeros(self.policy_input_shapes[k], dtype=np.float32) for k in self.policy_input_shapes}
 | |
|     self.full_input_queues = InputQueues(ModelConstants.MODEL_CONTEXT_FREQ, ModelConstants.MODEL_RUN_FREQ, ModelConstants.N_FRAMES)
 | |
|     for k in ['desire_pulse', 'features_buffer']:
 | |
|       self.full_input_queues.update_dtypes_and_shapes({k: self.numpy_inputs[k].dtype}, {k: self.numpy_inputs[k].shape})
 | |
|     self.full_input_queues.reset()
 | |
| 
 | |
|     # img buffers are managed in openCL transform code
 | |
|     self.vision_inputs: dict[str, Tensor] = {}
 | |
|     self.vision_output = np.zeros(vision_output_size, dtype=np.float32)
 | |
|     self.policy_inputs = {k: Tensor(v, device='NPY').realize() for k,v in self.numpy_inputs.items()}
 | |
|     self.policy_output = np.zeros(policy_output_size, dtype=np.float32)
 | |
|     self.parser = Parser()
 | |
| 
 | |
|     with open(VISION_PKL_PATH, "rb") as f:
 | |
|       self.vision_run = pickle.load(f)
 | |
| 
 | |
|     with open(POLICY_PKL_PATH, "rb") as f:
 | |
|       self.policy_run = pickle.load(f)
 | |
| 
 | |
|   def slice_outputs(self, model_outputs: np.ndarray, output_slices: dict[str, slice]) -> dict[str, np.ndarray]:
 | |
|     parsed_model_outputs = {k: model_outputs[np.newaxis, v] for k,v in output_slices.items()}
 | |
|     return parsed_model_outputs
 | |
| 
 | |
|   def run(self, bufs: dict[str, VisionBuf], transforms: dict[str, np.ndarray],
 | |
|                 inputs: dict[str, np.ndarray], prepare_only: bool) -> dict[str, np.ndarray] | None:
 | |
|     # Model decides when action is completed, so desire input is just a pulse triggered on rising edge
 | |
|     inputs['desire_pulse'][0] = 0
 | |
|     new_desire = np.where(inputs['desire_pulse'] - self.prev_desire > .99, inputs['desire_pulse'], 0)
 | |
|     self.prev_desire[:] = inputs['desire_pulse']
 | |
| 
 | |
|     imgs_cl = {name: self.frames[name].prepare(bufs[name], transforms[name].flatten()) for name in self.vision_input_names}
 | |
| 
 | |
|     if TICI and not USBGPU:
 | |
|       # The imgs tensors are backed by opencl memory, only need init once
 | |
|       for key in imgs_cl:
 | |
|         if key not in self.vision_inputs:
 | |
|           self.vision_inputs[key] = qcom_tensor_from_opencl_address(imgs_cl[key].mem_address, self.vision_input_shapes[key], dtype=dtypes.uint8)
 | |
|     else:
 | |
|       for key in imgs_cl:
 | |
|         frame_input = self.frames[key].buffer_from_cl(imgs_cl[key]).reshape(self.vision_input_shapes[key])
 | |
|         self.vision_inputs[key] = Tensor(frame_input, dtype=dtypes.uint8).realize()
 | |
| 
 | |
|     if prepare_only:
 | |
|       return None
 | |
| 
 | |
|     self.vision_output = self.vision_run(**self.vision_inputs).contiguous().realize().uop.base.buffer.numpy()
 | |
|     vision_outputs_dict = self.parser.parse_vision_outputs(self.slice_outputs(self.vision_output, self.vision_output_slices))
 | |
| 
 | |
|     self.full_input_queues.enqueue({'features_buffer': vision_outputs_dict['hidden_state'], 'desire_pulse': new_desire})
 | |
|     for k in ['desire_pulse', 'features_buffer']:
 | |
|       self.numpy_inputs[k][:] = self.full_input_queues.get(k)[k]
 | |
|     self.numpy_inputs['traffic_convention'][:] = inputs['traffic_convention']
 | |
| 
 | |
|     self.policy_output = self.policy_run(**self.policy_inputs).contiguous().realize().uop.base.buffer.numpy()
 | |
|     policy_outputs_dict = self.parser.parse_policy_outputs(self.slice_outputs(self.policy_output, self.policy_output_slices))
 | |
| 
 | |
|     combined_outputs_dict = {**vision_outputs_dict, **policy_outputs_dict}
 | |
|     if SEND_RAW_PRED:
 | |
|       combined_outputs_dict['raw_pred'] = np.concatenate([self.vision_output.copy(), self.policy_output.copy()])
 | |
| 
 | |
|     return combined_outputs_dict
 | |
| 
 | |
| 
 | |
| def main(demo=False):
 | |
|   cloudlog.warning("modeld init")
 | |
| 
 | |
|   if not USBGPU:
 | |
|     # USB GPU currently saturates a core so can't do this yet,
 | |
|     # also need to move the aux USB interrupts for good timings
 | |
|     config_realtime_process(7, 54)
 | |
| 
 | |
|   st = time.monotonic()
 | |
|   cloudlog.warning("setting up CL context")
 | |
|   cl_context = CLContext()
 | |
|   cloudlog.warning("CL context ready; loading model")
 | |
|   model = ModelState(cl_context)
 | |
|   cloudlog.warning(f"models loaded in {time.monotonic() - st:.1f}s, modeld starting")
 | |
| 
 | |
|   # visionipc clients
 | |
|   while True:
 | |
|     available_streams = VisionIpcClient.available_streams("camerad", block=False)
 | |
|     if available_streams:
 | |
|       use_extra_client = VisionStreamType.VISION_STREAM_WIDE_ROAD in available_streams and VisionStreamType.VISION_STREAM_ROAD in available_streams
 | |
|       main_wide_camera = VisionStreamType.VISION_STREAM_ROAD not in available_streams
 | |
|       break
 | |
|     time.sleep(.1)
 | |
| 
 | |
|   vipc_client_main_stream = VisionStreamType.VISION_STREAM_WIDE_ROAD if main_wide_camera else VisionStreamType.VISION_STREAM_ROAD
 | |
|   vipc_client_main = VisionIpcClient("camerad", vipc_client_main_stream, True, cl_context)
 | |
|   vipc_client_extra = VisionIpcClient("camerad", VisionStreamType.VISION_STREAM_WIDE_ROAD, False, cl_context)
 | |
|   cloudlog.warning(f"vision stream set up, main_wide_camera: {main_wide_camera}, use_extra_client: {use_extra_client}")
 | |
| 
 | |
|   while not vipc_client_main.connect(False):
 | |
|     time.sleep(0.1)
 | |
|   while use_extra_client and not vipc_client_extra.connect(False):
 | |
|     time.sleep(0.1)
 | |
| 
 | |
|   cloudlog.warning(f"connected main cam with buffer size: {vipc_client_main.buffer_len} ({vipc_client_main.width} x {vipc_client_main.height})")
 | |
|   if use_extra_client:
 | |
|     cloudlog.warning(f"connected extra cam with buffer size: {vipc_client_extra.buffer_len} ({vipc_client_extra.width} x {vipc_client_extra.height})")
 | |
| 
 | |
|   # messaging
 | |
|   pm = PubMaster(["modelV2", "drivingModelData", "cameraOdometry"])
 | |
|   sm = SubMaster(["deviceState", "carState", "roadCameraState", "liveCalibration", "driverMonitoringState", "carControl", "liveDelay"])
 | |
| 
 | |
|   publish_state = PublishState()
 | |
|   params = Params()
 | |
| 
 | |
|   # setup filter to track dropped frames
 | |
|   frame_dropped_filter = FirstOrderFilter(0., 10., 1. / ModelConstants.MODEL_RUN_FREQ)
 | |
|   frame_id = 0
 | |
|   last_vipc_frame_id = 0
 | |
|   run_count = 0
 | |
| 
 | |
|   model_transform_main = np.zeros((3, 3), dtype=np.float32)
 | |
|   model_transform_extra = np.zeros((3, 3), dtype=np.float32)
 | |
|   live_calib_seen = False
 | |
|   buf_main, buf_extra = None, None
 | |
|   meta_main = FrameMeta()
 | |
|   meta_extra = FrameMeta()
 | |
| 
 | |
| 
 | |
|   if demo:
 | |
|     CP = get_demo_car_params()
 | |
|   else:
 | |
|     CP = messaging.log_from_bytes(params.get("CarParams", block=True), car.CarParams)
 | |
|   cloudlog.info("modeld got CarParams: %s", CP.brand)
 | |
| 
 | |
|   # TODO this needs more thought, use .2s extra for now to estimate other delays
 | |
|   # TODO Move smooth seconds to action function
 | |
|   long_delay = CP.longitudinalActuatorDelay + LONG_SMOOTH_SECONDS
 | |
|   prev_action = log.ModelDataV2.Action()
 | |
| 
 | |
|   DH = DesireHelper()
 | |
| 
 | |
|   while True:
 | |
|     # Keep receiving frames until we are at least 1 frame ahead of previous extra frame
 | |
|     while meta_main.timestamp_sof < meta_extra.timestamp_sof + 25000000:
 | |
|       buf_main = vipc_client_main.recv()
 | |
|       meta_main = FrameMeta(vipc_client_main)
 | |
|       if buf_main is None:
 | |
|         break
 | |
| 
 | |
|     if buf_main is None:
 | |
|       cloudlog.debug("vipc_client_main no frame")
 | |
|       continue
 | |
| 
 | |
|     if use_extra_client:
 | |
|       # Keep receiving extra frames until frame id matches main camera
 | |
|       while True:
 | |
|         buf_extra = vipc_client_extra.recv()
 | |
|         meta_extra = FrameMeta(vipc_client_extra)
 | |
|         if buf_extra is None or meta_main.timestamp_sof < meta_extra.timestamp_sof + 25000000:
 | |
|           break
 | |
| 
 | |
|       if buf_extra is None:
 | |
|         cloudlog.debug("vipc_client_extra no frame")
 | |
|         continue
 | |
| 
 | |
|       if abs(meta_main.timestamp_sof - meta_extra.timestamp_sof) > 10000000:
 | |
|         cloudlog.error(f"frames out of sync! main: {meta_main.frame_id} ({meta_main.timestamp_sof / 1e9:.5f}),\
 | |
|                          extra: {meta_extra.frame_id} ({meta_extra.timestamp_sof / 1e9:.5f})")
 | |
| 
 | |
|     else:
 | |
|       # Use single camera
 | |
|       buf_extra = buf_main
 | |
|       meta_extra = meta_main
 | |
| 
 | |
|     sm.update(0)
 | |
|     desire = DH.desire
 | |
|     is_rhd = sm["driverMonitoringState"].isRHD
 | |
|     frame_id = sm["roadCameraState"].frameId
 | |
|     v_ego = max(sm["carState"].vEgo, 0.)
 | |
|     lat_delay = sm["liveDelay"].lateralDelay + LAT_SMOOTH_SECONDS
 | |
|     if sm.updated["liveCalibration"] and sm.seen['roadCameraState'] and sm.seen['deviceState']:
 | |
|       device_from_calib_euler = np.array(sm["liveCalibration"].rpyCalib, dtype=np.float32)
 | |
|       dc = DEVICE_CAMERAS[(str(sm['deviceState'].deviceType), str(sm['roadCameraState'].sensor))]
 | |
|       model_transform_main = get_warp_matrix(device_from_calib_euler, dc.ecam.intrinsics if main_wide_camera else dc.fcam.intrinsics, False).astype(np.float32)
 | |
|       model_transform_extra = get_warp_matrix(device_from_calib_euler, dc.ecam.intrinsics, True).astype(np.float32)
 | |
|       live_calib_seen = True
 | |
| 
 | |
|     traffic_convention = np.zeros(2)
 | |
|     traffic_convention[int(is_rhd)] = 1
 | |
| 
 | |
|     vec_desire = np.zeros(ModelConstants.DESIRE_LEN, dtype=np.float32)
 | |
|     if desire >= 0 and desire < ModelConstants.DESIRE_LEN:
 | |
|       vec_desire[desire] = 1
 | |
| 
 | |
|     # tracked dropped frames
 | |
|     vipc_dropped_frames = max(0, meta_main.frame_id - last_vipc_frame_id - 1)
 | |
|     frames_dropped = frame_dropped_filter.update(min(vipc_dropped_frames, 10))
 | |
|     if run_count < 10: # let frame drops warm up
 | |
|       frame_dropped_filter.x = 0.
 | |
|       frames_dropped = 0.
 | |
|     run_count = run_count + 1
 | |
| 
 | |
|     frame_drop_ratio = frames_dropped / (1 + frames_dropped)
 | |
|     prepare_only = vipc_dropped_frames > 0
 | |
|     if prepare_only:
 | |
|       cloudlog.error(f"skipping model eval. Dropped {vipc_dropped_frames} frames")
 | |
| 
 | |
|     bufs = {name: buf_extra if 'big' in name else buf_main for name in model.vision_input_names}
 | |
|     transforms = {name: model_transform_extra if 'big' in name else model_transform_main for name in model.vision_input_names}
 | |
|     inputs:dict[str, np.ndarray] = {
 | |
|       'desire_pulse': vec_desire,
 | |
|       'traffic_convention': traffic_convention,
 | |
|     }
 | |
| 
 | |
|     mt1 = time.perf_counter()
 | |
|     model_output = model.run(bufs, transforms, inputs, prepare_only)
 | |
|     mt2 = time.perf_counter()
 | |
|     model_execution_time = mt2 - mt1
 | |
| 
 | |
|     if model_output is not None:
 | |
|       modelv2_send = messaging.new_message('modelV2')
 | |
|       drivingdata_send = messaging.new_message('drivingModelData')
 | |
|       posenet_send = messaging.new_message('cameraOdometry')
 | |
| 
 | |
|       action = get_action_from_model(model_output, prev_action, lat_delay + DT_MDL, long_delay + DT_MDL, v_ego)
 | |
|       prev_action = action
 | |
|       fill_model_msg(drivingdata_send, modelv2_send, model_output, action,
 | |
|                      publish_state, meta_main.frame_id, meta_extra.frame_id, frame_id,
 | |
|                      frame_drop_ratio, meta_main.timestamp_eof, model_execution_time, live_calib_seen)
 | |
| 
 | |
|       desire_state = modelv2_send.modelV2.meta.desireState
 | |
|       l_lane_change_prob = desire_state[log.Desire.laneChangeLeft]
 | |
|       r_lane_change_prob = desire_state[log.Desire.laneChangeRight]
 | |
|       lane_change_prob = l_lane_change_prob + r_lane_change_prob
 | |
|       DH.update(sm['carState'], sm['carControl'].latActive, lane_change_prob)
 | |
|       modelv2_send.modelV2.meta.laneChangeState = DH.lane_change_state
 | |
|       modelv2_send.modelV2.meta.laneChangeDirection = DH.lane_change_direction
 | |
|       drivingdata_send.drivingModelData.meta.laneChangeState = DH.lane_change_state
 | |
|       drivingdata_send.drivingModelData.meta.laneChangeDirection = DH.lane_change_direction
 | |
| 
 | |
|       fill_pose_msg(posenet_send, model_output, meta_main.frame_id, vipc_dropped_frames, meta_main.timestamp_eof, live_calib_seen)
 | |
|       pm.send('modelV2', modelv2_send)
 | |
|       pm.send('drivingModelData', drivingdata_send)
 | |
|       pm.send('cameraOdometry', posenet_send)
 | |
|     last_vipc_frame_id = meta_main.frame_id
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|   try:
 | |
|     import argparse
 | |
|     parser = argparse.ArgumentParser()
 | |
|     parser.add_argument('--demo', action='store_true', help='A boolean for demo mode.')
 | |
|     args = parser.parse_args()
 | |
|     main(demo=args.demo)
 | |
|   except KeyboardInterrupt:
 | |
|     cloudlog.warning("got SIGINT")
 | |
| 
 |