You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							249 lines
						
					
					
						
							11 KiB
						
					
					
				
			
		
		
	
	
							249 lines
						
					
					
						
							11 KiB
						
					
					
				| #!/usr/bin/env python3
 | |
| import numpy as np
 | |
| from collections import deque, defaultdict
 | |
| 
 | |
| import cereal.messaging as messaging
 | |
| from cereal import car, log
 | |
| from openpilot.common.params import Params
 | |
| from openpilot.common.realtime import config_realtime_process, DT_MDL
 | |
| from openpilot.common.filter_simple import FirstOrderFilter
 | |
| from openpilot.common.swaglog import cloudlog
 | |
| from openpilot.selfdrive.controls.lib.vehicle_model import ACCELERATION_DUE_TO_GRAVITY
 | |
| from openpilot.selfdrive.locationd.helpers import PointBuckets, ParameterEstimator
 | |
| 
 | |
| HISTORY = 5  # secs
 | |
| POINTS_PER_BUCKET = 1500
 | |
| MIN_POINTS_TOTAL = 4000
 | |
| MIN_POINTS_TOTAL_QLOG = 600
 | |
| FIT_POINTS_TOTAL = 2000
 | |
| FIT_POINTS_TOTAL_QLOG = 600
 | |
| MIN_VEL = 15  # m/s
 | |
| FRICTION_FACTOR = 1.5  # ~85% of data coverage
 | |
| FACTOR_SANITY = 0.3
 | |
| FACTOR_SANITY_QLOG = 0.5
 | |
| FRICTION_SANITY = 0.5
 | |
| FRICTION_SANITY_QLOG = 0.8
 | |
| STEER_MIN_THRESHOLD = 0.02
 | |
| MIN_FILTER_DECAY = 50
 | |
| MAX_FILTER_DECAY = 250
 | |
| LAT_ACC_THRESHOLD = 1
 | |
| STEER_BUCKET_BOUNDS = [(-0.5, -0.3), (-0.3, -0.2), (-0.2, -0.1), (-0.1, 0), (0, 0.1), (0.1, 0.2), (0.2, 0.3), (0.3, 0.5)]
 | |
| MIN_BUCKET_POINTS = np.array([100, 300, 500, 500, 500, 500, 300, 100])
 | |
| MIN_ENGAGE_BUFFER = 2  # secs
 | |
| 
 | |
| VERSION = 1  # bump this to invalidate old parameter caches
 | |
| ALLOWED_CARS = ['toyota', 'hyundai']
 | |
| 
 | |
| 
 | |
| def slope2rot(slope):
 | |
|   sin = np.sqrt(slope**2 / (slope**2 + 1))
 | |
|   cos = np.sqrt(1 / (slope**2 + 1))
 | |
|   return np.array([[cos, -sin], [sin, cos]])
 | |
| 
 | |
| 
 | |
| class TorqueBuckets(PointBuckets):
 | |
|   def add_point(self, x, y):
 | |
|     for bound_min, bound_max in self.x_bounds:
 | |
|       if (x >= bound_min) and (x < bound_max):
 | |
|         self.buckets[(bound_min, bound_max)].append([x, 1.0, y])
 | |
|         break
 | |
| 
 | |
| 
 | |
| class TorqueEstimator(ParameterEstimator):
 | |
|   def __init__(self, CP, decimated=False):
 | |
|     self.hist_len = int(HISTORY / DT_MDL)
 | |
|     self.lag = CP.steerActuatorDelay + .2   # from controlsd
 | |
|     if decimated:
 | |
|       self.min_bucket_points = MIN_BUCKET_POINTS / 10
 | |
|       self.min_points_total = MIN_POINTS_TOTAL_QLOG
 | |
|       self.fit_points = FIT_POINTS_TOTAL_QLOG
 | |
|       self.factor_sanity = FACTOR_SANITY_QLOG
 | |
|       self.friction_sanity = FRICTION_SANITY_QLOG
 | |
| 
 | |
|     else:
 | |
|       self.min_bucket_points = MIN_BUCKET_POINTS
 | |
|       self.min_points_total = MIN_POINTS_TOTAL
 | |
|       self.fit_points = FIT_POINTS_TOTAL
 | |
|       self.factor_sanity = FACTOR_SANITY
 | |
|       self.friction_sanity = FRICTION_SANITY
 | |
| 
 | |
|     self.offline_friction = 0.0
 | |
|     self.offline_latAccelFactor = 0.0
 | |
|     self.resets = 0.0
 | |
|     self.use_params = CP.carName in ALLOWED_CARS and CP.lateralTuning.which() == 'torque'
 | |
| 
 | |
|     if CP.lateralTuning.which() == 'torque':
 | |
|       self.offline_friction = CP.lateralTuning.torque.friction
 | |
|       self.offline_latAccelFactor = CP.lateralTuning.torque.latAccelFactor
 | |
| 
 | |
|     self.reset()
 | |
| 
 | |
|     initial_params = {
 | |
|       'latAccelFactor': self.offline_latAccelFactor,
 | |
|       'latAccelOffset': 0.0,
 | |
|       'frictionCoefficient': self.offline_friction,
 | |
|       'points': []
 | |
|     }
 | |
|     self.decay = MIN_FILTER_DECAY
 | |
|     self.min_lataccel_factor = (1.0 - self.factor_sanity) * self.offline_latAccelFactor
 | |
|     self.max_lataccel_factor = (1.0 + self.factor_sanity) * self.offline_latAccelFactor
 | |
|     self.min_friction = (1.0 - self.friction_sanity) * self.offline_friction
 | |
|     self.max_friction = (1.0 + self.friction_sanity) * self.offline_friction
 | |
| 
 | |
|     # try to restore cached params
 | |
|     params = Params()
 | |
|     params_cache = params.get("CarParamsPrevRoute")
 | |
|     torque_cache = params.get("LiveTorqueParameters")
 | |
|     if params_cache is not None and torque_cache is not None:
 | |
|       try:
 | |
|         with log.Event.from_bytes(torque_cache) as log_evt:
 | |
|           cache_ltp = log_evt.liveTorqueParameters
 | |
|         with car.CarParams.from_bytes(params_cache) as msg:
 | |
|           cache_CP = msg
 | |
|         if self.get_restore_key(cache_CP, cache_ltp.version) == self.get_restore_key(CP, VERSION):
 | |
|           if cache_ltp.liveValid:
 | |
|             initial_params = {
 | |
|               'latAccelFactor': cache_ltp.latAccelFactorFiltered,
 | |
|               'latAccelOffset': cache_ltp.latAccelOffsetFiltered,
 | |
|               'frictionCoefficient': cache_ltp.frictionCoefficientFiltered
 | |
|             }
 | |
|           initial_params['points'] = cache_ltp.points
 | |
|           self.decay = cache_ltp.decay
 | |
|           self.filtered_points.load_points(initial_params['points'])
 | |
|           cloudlog.info("restored torque params from cache")
 | |
|       except Exception:
 | |
|         cloudlog.exception("failed to restore cached torque params")
 | |
|         params.remove("LiveTorqueParameters")
 | |
| 
 | |
|     self.filtered_params = {}
 | |
|     for param in initial_params:
 | |
|       self.filtered_params[param] = FirstOrderFilter(initial_params[param], self.decay, DT_MDL)
 | |
| 
 | |
|   def get_restore_key(self, CP, version):
 | |
|     a, b = None, None
 | |
|     if CP.lateralTuning.which() == 'torque':
 | |
|       a = CP.lateralTuning.torque.friction
 | |
|       b = CP.lateralTuning.torque.latAccelFactor
 | |
|     return (CP.carFingerprint, CP.lateralTuning.which(), a, b, version)
 | |
| 
 | |
|   def reset(self):
 | |
|     self.resets += 1.0
 | |
|     self.decay = MIN_FILTER_DECAY
 | |
|     self.raw_points = defaultdict(lambda: deque(maxlen=self.hist_len))
 | |
|     self.filtered_points = TorqueBuckets(x_bounds=STEER_BUCKET_BOUNDS,
 | |
|                                          min_points=self.min_bucket_points,
 | |
|                                          min_points_total=self.min_points_total,
 | |
|                                          points_per_bucket=POINTS_PER_BUCKET,
 | |
|                                          rowsize=3)
 | |
| 
 | |
|   def estimate_params(self):
 | |
|     points = self.filtered_points.get_points(self.fit_points)
 | |
|     # total least square solution as both x and y are noisy observations
 | |
|     # this is empirically the slope of the hysteresis parallelogram as opposed to the line through the diagonals
 | |
|     try:
 | |
|       _, _, v = np.linalg.svd(points, full_matrices=False)
 | |
|       slope, offset = -v.T[0:2, 2] / v.T[2, 2]
 | |
|       _, spread = np.matmul(points[:, [0, 2]], slope2rot(slope)).T
 | |
|       friction_coeff = np.std(spread) * FRICTION_FACTOR
 | |
|     except np.linalg.LinAlgError as e:
 | |
|       cloudlog.exception(f"Error computing live torque params: {e}")
 | |
|       slope = offset = friction_coeff = np.nan
 | |
|     return slope, offset, friction_coeff
 | |
| 
 | |
|   def update_params(self, params):
 | |
|     self.decay = min(self.decay + DT_MDL, MAX_FILTER_DECAY)
 | |
|     for param, value in params.items():
 | |
|       self.filtered_params[param].update(value)
 | |
|       self.filtered_params[param].update_alpha(self.decay)
 | |
| 
 | |
|   def handle_log(self, t, which, msg):
 | |
|     if which == "carControl":
 | |
|       self.raw_points["carControl_t"].append(t + self.lag)
 | |
|       self.raw_points["steer_torque"].append(-msg.actuatorsOutput.steer)
 | |
|       self.raw_points["active"].append(msg.latActive)
 | |
|     elif which == "carState":
 | |
|       self.raw_points["carState_t"].append(t + self.lag)
 | |
|       self.raw_points["vego"].append(msg.vEgo)
 | |
|       self.raw_points["steer_override"].append(msg.steeringPressed)
 | |
|     elif which == "liveLocationKalman":
 | |
|       if len(self.raw_points['steer_torque']) == self.hist_len:
 | |
|         yaw_rate = msg.angularVelocityCalibrated.value[2]
 | |
|         roll = msg.orientationNED.value[0]
 | |
|         active = np.interp(np.arange(t - MIN_ENGAGE_BUFFER, t, DT_MDL), self.raw_points['carControl_t'], self.raw_points['active']).astype(bool)
 | |
|         steer_override = np.interp(np.arange(t - MIN_ENGAGE_BUFFER, t, DT_MDL), self.raw_points['carState_t'], self.raw_points['steer_override']).astype(bool)
 | |
|         vego = np.interp(t, self.raw_points['carState_t'], self.raw_points['vego'])
 | |
|         steer = np.interp(t, self.raw_points['carControl_t'], self.raw_points['steer_torque'])
 | |
|         lateral_acc = (vego * yaw_rate) - (np.sin(roll) * ACCELERATION_DUE_TO_GRAVITY)
 | |
|         if all(active) and (not any(steer_override)) and (vego > MIN_VEL) and (abs(steer) > STEER_MIN_THRESHOLD) and (abs(lateral_acc) <= LAT_ACC_THRESHOLD):
 | |
|           self.filtered_points.add_point(float(steer), float(lateral_acc))
 | |
| 
 | |
|   def get_msg(self, valid=True, with_points=False):
 | |
|     msg = messaging.new_message('liveTorqueParameters')
 | |
|     msg.valid = valid
 | |
|     liveTorqueParameters = msg.liveTorqueParameters
 | |
|     liveTorqueParameters.version = VERSION
 | |
|     liveTorqueParameters.useParams = self.use_params
 | |
| 
 | |
|     # Calculate raw estimates when possible, only update filters when enough points are gathered
 | |
|     if self.filtered_points.is_calculable():
 | |
|       latAccelFactor, latAccelOffset, frictionCoeff = self.estimate_params()
 | |
|       liveTorqueParameters.latAccelFactorRaw = float(latAccelFactor)
 | |
|       liveTorqueParameters.latAccelOffsetRaw = float(latAccelOffset)
 | |
|       liveTorqueParameters.frictionCoefficientRaw = float(frictionCoeff)
 | |
| 
 | |
|       if self.filtered_points.is_valid():
 | |
|         if any(val is None or np.isnan(val) for val in [latAccelFactor, latAccelOffset, frictionCoeff]):
 | |
|           cloudlog.exception("Live torque parameters are invalid.")
 | |
|           liveTorqueParameters.liveValid = False
 | |
|           self.reset()
 | |
|         else:
 | |
|           liveTorqueParameters.liveValid = True
 | |
|           latAccelFactor = np.clip(latAccelFactor, self.min_lataccel_factor, self.max_lataccel_factor)
 | |
|           frictionCoeff = np.clip(frictionCoeff, self.min_friction, self.max_friction)
 | |
|           self.update_params({'latAccelFactor': latAccelFactor, 'latAccelOffset': latAccelOffset, 'frictionCoefficient': frictionCoeff})
 | |
| 
 | |
|     if with_points:
 | |
|       liveTorqueParameters.points = self.filtered_points.get_points()[:, [0, 2]].tolist()
 | |
| 
 | |
|     liveTorqueParameters.latAccelFactorFiltered = float(self.filtered_params['latAccelFactor'].x)
 | |
|     liveTorqueParameters.latAccelOffsetFiltered = float(self.filtered_params['latAccelOffset'].x)
 | |
|     liveTorqueParameters.frictionCoefficientFiltered = float(self.filtered_params['frictionCoefficient'].x)
 | |
|     liveTorqueParameters.totalBucketPoints = len(self.filtered_points)
 | |
|     liveTorqueParameters.decay = self.decay
 | |
|     liveTorqueParameters.maxResets = self.resets
 | |
|     return msg
 | |
| 
 | |
| 
 | |
| def main(demo=False):
 | |
|   config_realtime_process([0, 1, 2, 3], 5)
 | |
| 
 | |
|   pm = messaging.PubMaster(['liveTorqueParameters'])
 | |
|   sm = messaging.SubMaster(['carControl', 'carState', 'liveLocationKalman'], poll='liveLocationKalman')
 | |
| 
 | |
|   params = Params()
 | |
|   with car.CarParams.from_bytes(params.get("CarParams", block=True)) as CP:
 | |
|     estimator = TorqueEstimator(CP)
 | |
| 
 | |
|   while True:
 | |
|     sm.update()
 | |
|     if sm.all_checks():
 | |
|       for which in sm.updated.keys():
 | |
|         if sm.updated[which]:
 | |
|           t = sm.logMonoTime[which] * 1e-9
 | |
|           estimator.handle_log(t, which, sm[which])
 | |
| 
 | |
|     # 4Hz driven by liveLocationKalman
 | |
|     if sm.frame % 5 == 0:
 | |
|       pm.send('liveTorqueParameters', estimator.get_msg(valid=sm.all_checks()))
 | |
| 
 | |
|     # Cache points every 60 seconds while onroad
 | |
|     if sm.frame % 240 == 0:
 | |
|       msg = estimator.get_msg(valid=sm.all_checks(), with_points=True)
 | |
|       params.put_nonblocking("LiveTorqueParameters", msg.to_bytes())
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|   import argparse
 | |
|   parser = argparse.ArgumentParser(description='Process the --demo argument.')
 | |
|   parser.add_argument('--demo', action='store_true', help='A boolean for demo mode.')
 | |
|   args = parser.parse_args()
 | |
|   main(demo=args.demo)
 | |
| 
 |