You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							183 lines
						
					
					
						
							6.1 KiB
						
					
					
				
			
		
		
	
	
							183 lines
						
					
					
						
							6.1 KiB
						
					
					
				| #!/usr/bin/env python3
 | |
| import sys
 | |
| from typing import List
 | |
| 
 | |
| import numpy as np
 | |
| import sympy as sp
 | |
| 
 | |
| from rednose.helpers.ekf_sym import EKF_sym, gen_code
 | |
| from selfdrive.locationd.models.constants import ObservationKind
 | |
| from selfdrive.locationd.models.loc_kf import parse_pr, parse_prr
 | |
| 
 | |
| 
 | |
| class States():
 | |
|   ECEF_POS = slice(0, 3)  # x, y and z in ECEF in meters
 | |
|   ECEF_VELOCITY = slice(3, 6)
 | |
|   CLOCK_BIAS = slice(6, 7)  # clock bias in light-meters,
 | |
|   CLOCK_DRIFT = slice(7, 8)  # clock drift in light-meters/s,
 | |
|   CLOCK_ACCELERATION = slice(8, 9)  # clock acceleration in light-meters/s**2
 | |
|   GLONASS_BIAS = slice(9, 10)  # clock drift in light-meters/s,
 | |
|   GLONASS_FREQ_SLOPE = slice(10, 11)  # GLONASS bias in m expressed as bias + freq_num*freq_slope
 | |
| 
 | |
| 
 | |
| class GNSSKalman():
 | |
|   name = 'gnss'
 | |
| 
 | |
|   x_initial = np.array([-2712700.6008, -4281600.6679, 3859300.1830,
 | |
|                         0, 0, 0,
 | |
|                         0, 0, 0,
 | |
|                         0, 0])
 | |
| 
 | |
|   # state covariance
 | |
|   P_initial = np.diag([1e16, 1e16, 1e16,
 | |
|                        10**2, 10**2, 10**2,
 | |
|                        1e14, (100)**2, (0.2)**2,
 | |
|                        (10)**2, (1)**2])
 | |
| 
 | |
|   # process noise
 | |
|   Q = np.diag([0.03**2, 0.03**2, 0.03**2,
 | |
|                3**2, 3**2, 3**2,
 | |
|                (.1)**2, (0)**2, (0.005)**2,
 | |
|                .1**2, (.01)**2])
 | |
| 
 | |
|   maha_test_kinds: List[int] = []  # ObservationKind.PSEUDORANGE_RATE, ObservationKind.PSEUDORANGE, ObservationKind.PSEUDORANGE_GLONASS]
 | |
| 
 | |
|   @staticmethod
 | |
|   def generate_code(generated_dir):
 | |
|     dim_state = GNSSKalman.x_initial.shape[0]
 | |
|     name = GNSSKalman.name
 | |
|     maha_test_kinds = GNSSKalman.maha_test_kinds
 | |
| 
 | |
|     # make functions and jacobians with sympy
 | |
|     # state variables
 | |
|     state_sym = sp.MatrixSymbol('state', dim_state, 1)
 | |
|     state = sp.Matrix(state_sym)
 | |
|     x, y, z = state[0:3, :]
 | |
|     v = state[3:6, :]
 | |
|     vx, vy, vz = v
 | |
|     cb, cd, ca = state[6:9, :]
 | |
|     glonass_bias, glonass_freq_slope = state[9:11, :]
 | |
| 
 | |
|     dt = sp.Symbol('dt')
 | |
| 
 | |
|     state_dot = sp.Matrix(np.zeros((dim_state, 1)))
 | |
|     state_dot[:3, :] = v
 | |
|     state_dot[6, 0] = cd
 | |
|     state_dot[7, 0] = ca
 | |
| 
 | |
|     # Basic descretization, 1st order integrator
 | |
|     # Can be pretty bad if dt is big
 | |
|     f_sym = state + dt * state_dot
 | |
| 
 | |
|     #
 | |
|     # Observation functions
 | |
|     #
 | |
| 
 | |
|     # extra args
 | |
|     sat_pos_freq_sym = sp.MatrixSymbol('sat_pos', 4, 1)
 | |
|     sat_pos_vel_sym = sp.MatrixSymbol('sat_pos_vel', 6, 1)
 | |
|     # sat_los_sym = sp.MatrixSymbol('sat_los', 3, 1)
 | |
|     # orb_epos_sym = sp.MatrixSymbol('orb_epos_sym', 3, 1)
 | |
| 
 | |
|     # expand extra args
 | |
|     sat_x, sat_y, sat_z, glonass_freq = sat_pos_freq_sym
 | |
|     sat_vx, sat_vy, sat_vz = sat_pos_vel_sym[3:]
 | |
|     # los_x, los_y, los_z = sat_los_sym
 | |
|     # orb_x, orb_y, orb_z = orb_epos_sym
 | |
| 
 | |
|     h_pseudorange_sym = sp.Matrix([
 | |
|       sp.sqrt(
 | |
|         (x - sat_x)**2 +
 | |
|         (y - sat_y)**2 +
 | |
|         (z - sat_z)**2
 | |
|       ) + cb
 | |
|     ])
 | |
| 
 | |
|     h_pseudorange_glonass_sym = sp.Matrix([
 | |
|       sp.sqrt(
 | |
|         (x - sat_x)**2 +
 | |
|         (y - sat_y)**2 +
 | |
|         (z - sat_z)**2
 | |
|       ) + cb + glonass_bias + glonass_freq_slope * glonass_freq
 | |
|     ])
 | |
| 
 | |
|     los_vector = (sp.Matrix(sat_pos_vel_sym[0:3]) - sp.Matrix([x, y, z]))
 | |
|     los_vector = los_vector / sp.sqrt(los_vector[0]**2 + los_vector[1]**2 + los_vector[2]**2)
 | |
|     h_pseudorange_rate_sym = sp.Matrix([los_vector[0] * (sat_vx - vx) +
 | |
|                                         los_vector[1] * (sat_vy - vy) +
 | |
|                                         los_vector[2] * (sat_vz - vz) +
 | |
|                                         cd])
 | |
| 
 | |
|     obs_eqs = [[h_pseudorange_sym, ObservationKind.PSEUDORANGE_GPS, sat_pos_freq_sym],
 | |
|                [h_pseudorange_glonass_sym, ObservationKind.PSEUDORANGE_GLONASS, sat_pos_freq_sym],
 | |
|                [h_pseudorange_rate_sym, ObservationKind.PSEUDORANGE_RATE_GPS, sat_pos_vel_sym],
 | |
|                [h_pseudorange_rate_sym, ObservationKind.PSEUDORANGE_RATE_GLONASS, sat_pos_vel_sym]]
 | |
| 
 | |
|     gen_code(generated_dir, name, f_sym, dt, state_sym, obs_eqs, dim_state, dim_state, maha_test_kinds=maha_test_kinds)
 | |
| 
 | |
|   def __init__(self, generated_dir):
 | |
|     self.dim_state = self.x_initial.shape[0]
 | |
| 
 | |
|     # init filter
 | |
|     self.filter = EKF_sym(generated_dir, self.name, self.Q, self.x_initial, self.P_initial, self.dim_state,
 | |
|                           self.dim_state, maha_test_kinds=self.maha_test_kinds)
 | |
|     self.init_state(GNSSKalman.x_initial, covs=GNSSKalman.P_initial)
 | |
| 
 | |
|   @property
 | |
|   def x(self):
 | |
|     return self.filter.state()
 | |
| 
 | |
|   @property
 | |
|   def P(self):
 | |
|     return self.filter.covs()
 | |
| 
 | |
|   def predict(self, t):
 | |
|     return self.filter.predict(t)
 | |
| 
 | |
|   def rts_smooth(self, estimates):
 | |
|     return self.filter.rts_smooth(estimates, norm_quats=False)
 | |
| 
 | |
|   def init_state(self, state, covs_diag=None, covs=None, filter_time=None):
 | |
|     if covs_diag is not None:
 | |
|       P = np.diag(covs_diag)
 | |
|     elif covs is not None:
 | |
|       P = covs
 | |
|     else:
 | |
|       P = self.filter.covs()
 | |
|     self.filter.init_state(state, P, filter_time)
 | |
| 
 | |
|   def predict_and_observe(self, t, kind, data):
 | |
|     if len(data) > 0:
 | |
|       data = np.atleast_2d(data)
 | |
|     if kind == ObservationKind.PSEUDORANGE_GPS or kind == ObservationKind.PSEUDORANGE_GLONASS:
 | |
|       r = self.predict_and_update_pseudorange(data, t, kind)
 | |
|     elif kind == ObservationKind.PSEUDORANGE_RATE_GPS or kind == ObservationKind.PSEUDORANGE_RATE_GLONASS:
 | |
|       r = self.predict_and_update_pseudorange_rate(data, t, kind)
 | |
|     return r
 | |
| 
 | |
|   def predict_and_update_pseudorange(self, meas, t, kind):
 | |
|     R = np.zeros((len(meas), 1, 1))
 | |
|     sat_pos_freq = np.zeros((len(meas), 4))
 | |
|     z = np.zeros((len(meas), 1))
 | |
|     for i, m in enumerate(meas):
 | |
|       z_i, R_i, sat_pos_freq_i = parse_pr(m)
 | |
|       sat_pos_freq[i, :] = sat_pos_freq_i
 | |
|       z[i, :] = z_i
 | |
|       R[i, :, :] = R_i
 | |
|     return self.filter.predict_and_update_batch(t, kind, z, R, sat_pos_freq)
 | |
| 
 | |
|   def predict_and_update_pseudorange_rate(self, meas, t, kind):
 | |
|     R = np.zeros((len(meas), 1, 1))
 | |
|     z = np.zeros((len(meas), 1))
 | |
|     sat_pos_vel = np.zeros((len(meas), 6))
 | |
|     for i, m in enumerate(meas):
 | |
|       z_i, R_i, sat_pos_vel_i = parse_prr(m)
 | |
|       sat_pos_vel[i] = sat_pos_vel_i
 | |
|       R[i, :, :] = R_i
 | |
|       z[i, :] = z_i
 | |
|     return self.filter.predict_and_update_batch(t, kind, z, R, sat_pos_vel)
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|   generated_dir = sys.argv[2]
 | |
|   GNSSKalman.generate_code(generated_dir)
 | |
| 
 |