openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

197 lines
7.9 KiB

import unittest
from typing import Any, Tuple
from onnx.backend.base import Backend, BackendRep
import onnx.backend.test
import numpy as np
from tinygrad import Tensor, Device, dtypes
from tinygrad.helpers import getenv, OSX
from tinygrad.device import is_dtype_supported
# pip3 install tabulate
pytest_plugins = 'onnx.backend.test.report',
from extra.onnx import get_run_onnx
class TinygradModel(BackendRep):
def __init__(self, run_onnx, input_names):
super().__init__()
self.fxn = run_onnx
self.input_names = input_names
def run(self, inputs: Any, **kwargs: Any) -> Tuple[Any, ...]:
real_inputs = dict(zip(self.input_names, inputs))
ret = self.fxn(real_inputs, debug=True)
return tuple(x.numpy() if isinstance(x, Tensor) else [i.numpy() for i in x] if isinstance(x, list) else np.array(x) for x in ret.values())
class TinygradBackend(Backend):
@classmethod
def prepare(cls, model, device):
input_all = [x.name for x in model.graph.input]
input_initializer = [x.name for x in model.graph.initializer]
net_feed_input = [x for x in input_all if x not in input_initializer]
print("prepare", cls, device, net_feed_input)
run_onnx = get_run_onnx(model)
return TinygradModel(run_onnx, net_feed_input)
@classmethod
def supports_device(cls, device: str) -> bool:
# NOTE: this is onnx CPU
return device == "CPU"
backend_test = onnx.backend.test.BackendTest(TinygradBackend, __name__)
# TODO: there isn't an AttributeProto for `epsilon` in the NodeProto for 'test_adam_multiple_cpu'
# [x.name for x in n.attribute] -> ['alpha', 'beta', 'norm_coefficient']
# but in their documentation https://github.com/onnx/onnx/blob/main/docs/Operators.md#examples-176, it states there being an epsilon of 1e-2
# test passes with epsilon = 1e-2
backend_test.exclude('test_adam_multiple_cpu')
# about different dtypes
if not is_dtype_supported(dtypes.float64):
backend_test.exclude('float64')
backend_test.exclude('DOUBLE')
# these have float64 inputs
backend_test.exclude('test_eyelike_with_dtype_cpu')
backend_test.exclude('test_reduce_log_sum_exp*')
backend_test.exclude('test_operator_add*')
backend_test.exclude('test_einsum_*')
backend_test.exclude('test_cumsum_*')
if not is_dtype_supported(dtypes.float16):
backend_test.exclude('float16')
backend_test.exclude('FLOAT16')
# dtype cast
backend_test.exclude('STRING')
backend_test.exclude('FLOAT8')
backend_test.exclude('INT4')
backend_test.exclude('UINT4')
backend_test.exclude('BFLOAT16') # not supported in numpy
# TODO: fix these with true onnx float16
backend_test.exclude('to_FLOAT16')
backend_test.exclude('cast_no_saturate')
backend_test.exclude('test_dequantizelinear_e4m3fn_float16_cpu')
backend_test.exclude('test_max_float16_cpu')
backend_test.exclude('test_min_float16_cpu')
backend_test.exclude('test_convinteger_*')
backend_test.exclude('test_matmulinteger_*')
backend_test.exclude('test_dequantizelinear_int4_cpu')
backend_test.exclude('test_dequantizelinear_uint4_cpu')
# we don't support indexes
backend_test.exclude('test_nonzero_*')
# no support for mod
backend_test.exclude('test_mod_*')
# no boolean ops (2d, 3d, 4d)
backend_test.exclude('test_bitshift_*')
# no string ops
backend_test.exclude('string')
backend_test.exclude('test_strnorm_*')
backend_test.exclude('test_regex_*')
# no quantize
backend_test.exclude('test_dynamicquantizelinear_*')
backend_test.exclude('test_qlinearmatmul_*')
backend_test.exclude('test_qlinearconv_*')
backend_test.exclude('test_quantizelinear_*')
# no rnn
backend_test.exclude('test_gru_*')
backend_test.exclude('test_rnn_*')
backend_test.exclude('test_lstm_*')
backend_test.exclude('test_simple_rnn_*')
# no control flow
# control flow uses AttributeProto.GRAPH
backend_test.exclude('test_if_*')
backend_test.exclude('test_loop*')
backend_test.exclude('test_range_float_type_positive_delta_expanded_cpu') # requires loop
backend_test.exclude('test_affine_grid_2d_align_corners_expanded_cpu')
backend_test.exclude('test_affine_grid_2d_expanded_cpu')
backend_test.exclude('test_affine_grid_3d_align_corners_expanded_cpu')
backend_test.exclude('test_affine_grid_3d_expanded_cpu')
backend_test.exclude('test_range_int32_type_negative_delta_expanded_cpu')
# unsupported (strange) ops
backend_test.exclude('test_blackmanwindow_*')
backend_test.exclude('test_bernoulli_*')
backend_test.exclude('test_det_*')
backend_test.exclude('test_col2im_*')
backend_test.exclude('test_hammingwindow_*')
backend_test.exclude('test_hannwindow_*')
backend_test.exclude('test_hardmax_*')
backend_test.exclude('test_gridsample_*')
backend_test.exclude('test_dft_*')
backend_test.exclude('test_einsum_batch_diagonal_cpu*') # TODO: equation = '...ii ->...i'
backend_test.exclude('test_einsum_inner_prod_cpu*') # TODO: equation = 'i,i'
backend_test.exclude('test_unique_*')
backend_test.exclude('test_sequence_*')
backend_test.exclude('test_nonmaxsuppression_*')
backend_test.exclude('test_reversesequence_*')
backend_test.exclude('test_roialign_*')
backend_test.exclude('test_top_k_*')
backend_test.exclude('test_tfidfvectorizer_*')
backend_test.exclude('test_stft_*')
backend_test.exclude('test_melweightmatrix_*')
# more strange ops
backend_test.exclude('test_basic_deform_conv_*')
backend_test.exclude('test_deform_conv_*')
backend_test.exclude('test_lppool_*')
backend_test.exclude('test_scan_*')
backend_test.exclude('test_split_to_sequence_*')
backend_test.exclude('test_resize_downsample_scales_cubic_*') # unsure how to implement cubic
backend_test.exclude('test_resize_downsample_sizes_cubic_*') # unsure how to implement cubic
backend_test.exclude('test_resize_upsample_scales_cubic_*') # unsure how to implement cubic
backend_test.exclude('test_resize_upsample_sizes_cubic_*') # unsure how to implement cubic
backend_test.exclude('test_ai_onnx_ml_tree_ensemble_*') # https://github.com/onnx/onnx/blob/main/onnx/reference/ops/aionnxml/op_tree_ensemble.py#L121
# rest of the failing tests
backend_test.exclude('test_resize_downsample_scales_linear_antialias_cpu') # antialias not implemented
backend_test.exclude('test_resize_downsample_sizes_linear_antialias_cpu') # antialias not implemented
backend_test.exclude('test_resize_tf_crop_and_resize_cpu') # unsure about fill value after clip
backend_test.exclude('test_ai_onnx_ml_label_encoder_tensor_value_only_mapping_cpu') # bad data type string
backend_test.exclude('test_ai_onnx_ml_label_encoder_tensor_mapping_cpu') # bad data type string
backend_test.exclude('test_group_normalization_*') # numerical inaccuracy problem. Current Group Normalization OP fails test
backend_test.exclude('test_scatter_elements_with_reduction_min_cpu') # min not yet supported
backend_test.exclude('test_scatternd_min_cpu') # min not yet supported
backend_test.exclude('test_scatter_elements_with_reduction_max_cpu') # max not yet supported
backend_test.exclude('test_scatternd_max_cpu') # max not yet supported
if Device.DEFAULT in ['GPU', 'METAL']:
backend_test.exclude('test_resize_upsample_sizes_nearest_axes_2_3_cpu')
backend_test.exclude('test_resize_upsample_sizes_nearest_axes_3_2_cpu')
backend_test.exclude('test_resize_upsample_sizes_nearest_cpu')
if Device.DEFAULT == "METAL" or (OSX and Device.DEFAULT == "GPU"):
# numerical inaccuracy
backend_test.exclude('test_mish_cpu')
backend_test.exclude('test_mish_expanded_cpu')
# disable model tests for now since they are slow
if not getenv("MODELTESTS"):
for x in backend_test.test_suite:
if 'OnnxBackendRealModelTest' in str(type(x)):
backend_test.exclude(str(x).split(" ")[0])
else:
# model tests all pass!
backend_test.include('test_resnet50')
backend_test.include('test_inception_v1')
backend_test.include('test_inception_v2')
backend_test.include('test_densenet121')
backend_test.include('test_shufflenet')
backend_test.include('test_squeezenet')
backend_test.include('test_bvlc_alexnet')
backend_test.include('test_zfnet512')
backend_test.include('test_vgg19')
globals().update(backend_test.enable_report().test_cases)
if __name__ == '__main__':
unittest.main()