You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							145 lines
						
					
					
						
							4.7 KiB
						
					
					
				
			
		
		
	
	
							145 lines
						
					
					
						
							4.7 KiB
						
					
					
				#!/usr/bin/env python3
 | 
						|
import os
 | 
						|
import struct
 | 
						|
import zipfile
 | 
						|
import numpy as np
 | 
						|
from tqdm import tqdm
 | 
						|
 | 
						|
from common.basedir import BASEDIR
 | 
						|
from selfdrive.modeld.thneed.lib import load_thneed, save_thneed
 | 
						|
 | 
						|
# this is junk code, but it doesn't have deps
 | 
						|
def load_dlc_weights(fn):
 | 
						|
  archive = zipfile.ZipFile(fn, 'r')
 | 
						|
  dlc_params = archive.read("model.params")
 | 
						|
 | 
						|
  def extract(rdat):
 | 
						|
    idx = rdat.find(b"\x00\x00\x00\x09\x04\x00\x00\x00")
 | 
						|
    rdat = rdat[idx+8:]
 | 
						|
    ll = struct.unpack("I", rdat[0:4])[0]
 | 
						|
    buf = np.frombuffer(rdat[4:4+ll*4], dtype=np.float32)
 | 
						|
    rdat = rdat[4+ll*4:]
 | 
						|
    dims = struct.unpack("I", rdat[0:4])[0]
 | 
						|
    buf = buf.reshape(struct.unpack("I"*dims, rdat[4:4+dims*4]))
 | 
						|
    if len(buf.shape) == 4:
 | 
						|
      buf = np.transpose(buf, (3,2,0,1))
 | 
						|
    return buf
 | 
						|
 | 
						|
  def parse(tdat):
 | 
						|
    ll = struct.unpack("I", tdat[0:4])[0] + 4
 | 
						|
    return (None, [extract(tdat[0:]), extract(tdat[ll:])])
 | 
						|
 | 
						|
  ptr = 0x20
 | 
						|
  def r4():
 | 
						|
    nonlocal ptr
 | 
						|
    ret = struct.unpack("I", dlc_params[ptr:ptr+4])[0]
 | 
						|
    ptr += 4
 | 
						|
    return ret
 | 
						|
  ranges = []
 | 
						|
  cnt = r4()
 | 
						|
  for _ in range(cnt):
 | 
						|
    o = r4() + ptr
 | 
						|
    # the header is 0xC
 | 
						|
    plen, is_4, is_2 = struct.unpack("III", dlc_params[o:o+0xC])
 | 
						|
    assert is_4 == 4 and is_2 == 2
 | 
						|
    ranges.append((o+0xC, o+plen+0xC))
 | 
						|
  ranges = sorted(ranges, reverse=True)
 | 
						|
 | 
						|
  return [parse(dlc_params[s:e]) for s,e in ranges]
 | 
						|
 | 
						|
# this won't run on device without onnx
 | 
						|
def load_onnx_weights(fn):
 | 
						|
  import onnx
 | 
						|
  from onnx import numpy_helper
 | 
						|
 | 
						|
  model = onnx.load(fn)
 | 
						|
  graph = model.graph  # pylint: disable=maybe-no-member
 | 
						|
  init = {x.name:x for x in graph.initializer}
 | 
						|
 | 
						|
  onnx_layers = []
 | 
						|
  for node in graph.node:
 | 
						|
    #print(node.name, node.op_type, node.input, node.output)
 | 
						|
    vals = []
 | 
						|
    for inp in node.input:
 | 
						|
      if inp in init:
 | 
						|
        vals.append(numpy_helper.to_array(init[inp]))
 | 
						|
    if len(vals) > 0:
 | 
						|
      onnx_layers.append((node.name, vals))
 | 
						|
  return onnx_layers
 | 
						|
 | 
						|
def weights_fixup(target, source_thneed, dlc):
 | 
						|
  #onnx_layers = load_onnx_weights(os.path.join(BASEDIR, "models/supercombo.onnx"))
 | 
						|
  onnx_layers = load_dlc_weights(dlc)
 | 
						|
  jdat = load_thneed(source_thneed)
 | 
						|
 | 
						|
  bufs = {}
 | 
						|
  for o in jdat['objects']:
 | 
						|
    bufs[o['id']] = o
 | 
						|
 | 
						|
  thneed_layers = []
 | 
						|
  for k in jdat['kernels']:
 | 
						|
    #print(k['name'])
 | 
						|
    vals = []
 | 
						|
    for a in k['args']:
 | 
						|
      if a in bufs:
 | 
						|
        o = bufs[a]
 | 
						|
        if o['needs_load'] or ('buffer_id' in o and bufs[o['buffer_id']]['needs_load']):
 | 
						|
          #print("  ", o['arg_type'])
 | 
						|
          vals.append(o)
 | 
						|
    if len(vals) > 0:
 | 
						|
      thneed_layers.append((k['name'], vals))
 | 
						|
 | 
						|
  assert len(thneed_layers) == len(onnx_layers)
 | 
						|
 | 
						|
  # fix up weights
 | 
						|
  for tl, ol in tqdm(zip(thneed_layers, onnx_layers), total=len(thneed_layers)):
 | 
						|
    #print(tl[0], ol[0])
 | 
						|
    assert len(tl[1]) == len(ol[1])
 | 
						|
    for o, onnx_weight in zip(tl[1], ol[1]):
 | 
						|
      if o['arg_type'] == "image2d_t":
 | 
						|
        obuf = bufs[o['buffer_id']]
 | 
						|
        saved_weights = np.frombuffer(obuf['data'], dtype=np.float16).reshape(o['height'], o['row_pitch']//2)
 | 
						|
 | 
						|
        if len(onnx_weight.shape) == 4:
 | 
						|
          # convolution
 | 
						|
          oc,ic,ch,cw = onnx_weight.shape
 | 
						|
 | 
						|
          if 'depthwise' in tl[0]:
 | 
						|
            assert ic == 1
 | 
						|
            weights = np.transpose(onnx_weight.reshape(oc//4,4,ch,cw), (0,2,3,1)).reshape(o['height'], o['width']*4)
 | 
						|
          else:
 | 
						|
            weights = np.transpose(onnx_weight.reshape(oc//4,4,ic//4,4,ch,cw), (0,4,2,5,1,3)).reshape(o['height'], o['width']*4)
 | 
						|
        else:
 | 
						|
          # fc_Wtx
 | 
						|
          weights = onnx_weight
 | 
						|
 | 
						|
        new_weights = np.zeros((o['height'], o['row_pitch']//2), dtype=np.float32)
 | 
						|
        new_weights[:, :weights.shape[1]] = weights
 | 
						|
 | 
						|
        # weights shouldn't be too far off
 | 
						|
        err = np.mean((saved_weights.astype(np.float32) - new_weights)**2)
 | 
						|
        assert err < 1e-3
 | 
						|
        rerr = np.mean(np.abs((saved_weights.astype(np.float32) - new_weights)/(new_weights+1e-12)))
 | 
						|
        assert rerr < 0.5
 | 
						|
 | 
						|
        # fix should improve things
 | 
						|
        fixed_err = np.mean((new_weights.astype(np.float16).astype(np.float32) - new_weights)**2)
 | 
						|
        assert (err/fixed_err) >= 1
 | 
						|
 | 
						|
        #print("   ", o['size'], onnx_weight.shape, o['row_pitch'], o['width'], o['height'], "err %.2fx better" % (err/fixed_err))
 | 
						|
 | 
						|
        obuf['data'] = new_weights.astype(np.float16).tobytes()
 | 
						|
 | 
						|
      elif o['arg_type'] == "float*":
 | 
						|
        # unconverted floats are correct
 | 
						|
        new_weights = np.zeros(o['size']//4, dtype=np.float32)
 | 
						|
        new_weights[:onnx_weight.shape[0]] = onnx_weight
 | 
						|
        assert new_weights.tobytes() == o['data']
 | 
						|
        #print("   ", o['size'], onnx_weight.shape)
 | 
						|
 | 
						|
  save_thneed(jdat, target)
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
  weights_fixup(os.path.join(BASEDIR, "models/supercombo_fixed.thneed"),
 | 
						|
                os.path.join(BASEDIR, "models/supercombo.thneed"),
 | 
						|
                os.path.join(BASEDIR, "models/supercombo.dlc"))
 | 
						|
 |