openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

145 lines
5.6 KiB

#!/usr/bin/env python3
from cereal import car
from panda import Panda
from openpilot.selfdrive.car import get_safety_config
from openpilot.selfdrive.car.interfaces import CarInterfaceBase
from openpilot.selfdrive.car.subaru.values import CAR, LKAS_ANGLE, GLOBAL_GEN2, PREGLOBAL_CARS, HYBRID_CARS, SubaruFlags
class CarInterface(CarInterfaceBase):
@staticmethod
def _get_params(ret, candidate, fingerprint, car_fw, experimental_long, docs):
ret.carName = "subaru"
ret.radarUnavailable = True
# for HYBRID CARS to be upstreamed, we need:
# - replacement for ES_Distance so we can cancel the cruise control
# - to find the Cruise_Activated bit from the car
# - proper panda safety setup (use the correct cruise_activated bit, throttle from Throttle_Hybrid, etc)
ret.dashcamOnly = candidate in (PREGLOBAL_CARS | LKAS_ANGLE | HYBRID_CARS)
ret.autoResumeSng = False
# Detect infotainment message sent from the camera
if candidate not in PREGLOBAL_CARS and 0x323 in fingerprint[2]:
ret.flags |= SubaruFlags.SEND_INFOTAINMENT.value
if candidate in PREGLOBAL_CARS:
ret.enableBsm = 0x25c in fingerprint[0]
ret.safetyConfigs = [get_safety_config(car.CarParams.SafetyModel.subaruPreglobal)]
else:
ret.enableBsm = 0x228 in fingerprint[0]
ret.safetyConfigs = [get_safety_config(car.CarParams.SafetyModel.subaru)]
if candidate in GLOBAL_GEN2:
ret.safetyConfigs[0].safetyParam |= Panda.FLAG_SUBARU_GEN2
ret.steerLimitTimer = 0.4
ret.steerActuatorDelay = 0.1
if candidate in LKAS_ANGLE:
ret.steerControlType = car.CarParams.SteerControlType.angle
else:
CarInterfaceBase.configure_torque_tune(candidate, ret.lateralTuning)
if candidate == CAR.ASCENT:
ret.mass = 2031.
ret.wheelbase = 2.89
ret.centerToFront = ret.wheelbase * 0.5
ret.steerRatio = 13.5
ret.steerActuatorDelay = 0.3 # end-to-end angle controller
ret.lateralTuning.init('pid')
ret.lateralTuning.pid.kf = 0.00003
ret.lateralTuning.pid.kiBP, ret.lateralTuning.pid.kpBP = [[0., 20.], [0., 20.]]
ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.0025, 0.1], [0.00025, 0.01]]
elif candidate == CAR.IMPREZA:
ret.mass = 1568.
ret.wheelbase = 2.67
ret.centerToFront = ret.wheelbase * 0.5
ret.steerRatio = 15
ret.steerActuatorDelay = 0.4 # end-to-end angle controller
ret.lateralTuning.init('pid')
ret.lateralTuning.pid.kf = 0.00005
ret.lateralTuning.pid.kiBP, ret.lateralTuning.pid.kpBP = [[0., 20.], [0., 20.]]
ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.2, 0.3], [0.02, 0.03]]
elif candidate == CAR.IMPREZA_2020:
ret.mass = 1480.
ret.wheelbase = 2.67
ret.centerToFront = ret.wheelbase * 0.5
ret.steerRatio = 17 # learned, 14 stock
ret.lateralTuning.init('pid')
ret.lateralTuning.pid.kf = 0.00005
ret.lateralTuning.pid.kiBP, ret.lateralTuning.pid.kpBP = [[0., 14., 23.], [0., 14., 23.]]
ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.045, 0.042, 0.20], [0.04, 0.035, 0.045]]
elif candidate == CAR.CROSSTREK_HYBRID:
ret.mass = 1668.
ret.wheelbase = 2.67
ret.centerToFront = ret.wheelbase * 0.5
ret.steerRatio = 17
ret.steerActuatorDelay = 0.1
elif candidate in (CAR.FORESTER, CAR.FORESTER_2022):
ret.mass = 1568.
ret.wheelbase = 2.67
ret.centerToFront = ret.wheelbase * 0.5
ret.steerRatio = 17 # learned, 14 stock
ret.lateralTuning.init('pid')
ret.lateralTuning.pid.kf = 0.000038
ret.lateralTuning.pid.kiBP, ret.lateralTuning.pid.kpBP = [[0., 14., 23.], [0., 14., 23.]]
ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.01, 0.065, 0.2], [0.001, 0.015, 0.025]]
elif candidate in (CAR.OUTBACK, CAR.LEGACY, CAR.OUTBACK_2023):
ret.mass = 1568.
ret.wheelbase = 2.67
ret.centerToFront = ret.wheelbase * 0.5
ret.steerRatio = 17
ret.steerActuatorDelay = 0.1
elif candidate in (CAR.FORESTER_PREGLOBAL, CAR.OUTBACK_PREGLOBAL_2018):
ret.safetyConfigs[0].safetyParam = 1 # Outback 2018-2019 and Forester have reversed driver torque signal
ret.mass = 1568
ret.wheelbase = 2.67
ret.centerToFront = ret.wheelbase * 0.5
ret.steerRatio = 20 # learned, 14 stock
elif candidate == CAR.LEGACY_PREGLOBAL:
ret.mass = 1568
ret.wheelbase = 2.67
ret.centerToFront = ret.wheelbase * 0.5
ret.steerRatio = 12.5 # 14.5 stock
ret.steerActuatorDelay = 0.15
elif candidate == CAR.OUTBACK_PREGLOBAL:
ret.mass = 1568
ret.wheelbase = 2.67
ret.centerToFront = ret.wheelbase * 0.5
ret.steerRatio = 20 # learned, 14 stock
else:
raise ValueError(f"unknown car: {candidate}")
#ret.experimentalLongitudinalAvailable = candidate not in (GLOBAL_GEN2 | PREGLOBAL_CARS | LKAS_ANGLE | HYBRID_CARS)
ret.openpilotLongitudinalControl = experimental_long and ret.experimentalLongitudinalAvailable
if ret.openpilotLongitudinalControl:
ret.longitudinalTuning.kpBP = [0., 5., 35.]
ret.longitudinalTuning.kpV = [0.8, 1.0, 1.5]
ret.longitudinalTuning.kiBP = [0., 35.]
ret.longitudinalTuning.kiV = [0.54, 0.36]
ret.stoppingControl = True
ret.safetyConfigs[0].safetyParam |= Panda.FLAG_SUBARU_LONG
return ret
# returns a car.CarState
def _update(self, c):
ret = self.CS.update(self.cp, self.cp_cam, self.cp_body)
ret.events = self.create_common_events(ret).to_msg()
return ret
def apply(self, c, now_nanos):
return self.CC.update(c, self.CS, now_nanos)