You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							91 lines
						
					
					
						
							3.3 KiB
						
					
					
				
			
		
		
	
	
							91 lines
						
					
					
						
							3.3 KiB
						
					
					
				from common.numpy_fast import interp
 | 
						|
import numpy as np
 | 
						|
from selfdrive.hardware import EON, TICI
 | 
						|
from cereal import log
 | 
						|
 | 
						|
 | 
						|
TRAJECTORY_SIZE = 33
 | 
						|
# camera offset is meters from center car to camera
 | 
						|
if EON:
 | 
						|
  CAMERA_OFFSET = 0.06
 | 
						|
elif TICI:
 | 
						|
  CAMERA_OFFSET = -0.04
 | 
						|
else:
 | 
						|
  CAMERA_OFFSET = 0.0
 | 
						|
 | 
						|
 | 
						|
 | 
						|
class LanePlanner:
 | 
						|
  def __init__(self):
 | 
						|
    self.ll_t = np.zeros((TRAJECTORY_SIZE,))
 | 
						|
    self.ll_x = np.zeros((TRAJECTORY_SIZE,))
 | 
						|
    self.lll_y = np.zeros((TRAJECTORY_SIZE,))
 | 
						|
    self.rll_y = np.zeros((TRAJECTORY_SIZE,))
 | 
						|
    self.lane_width_estimate = 3.7
 | 
						|
    self.lane_width_certainty = 1.0
 | 
						|
    self.lane_width = 3.7
 | 
						|
 | 
						|
    self.lll_prob = 0.
 | 
						|
    self.rll_prob = 0.
 | 
						|
    self.d_prob = 0.
 | 
						|
 | 
						|
    self.lll_std = 0.
 | 
						|
    self.rll_std = 0.
 | 
						|
 | 
						|
    self.l_lane_change_prob = 0.
 | 
						|
    self.r_lane_change_prob = 0.
 | 
						|
 | 
						|
 | 
						|
  def parse_model(self, md):
 | 
						|
    if len(md.laneLines) == 4 and len(md.laneLines[0].t) == TRAJECTORY_SIZE:
 | 
						|
      self.ll_t = (np.array(md.laneLines[1].t) + np.array(md.laneLines[2].t))/2
 | 
						|
      # left and right ll x is the same
 | 
						|
      self.ll_x = md.laneLines[1].x
 | 
						|
      # only offset left and right lane lines; offsetting path does not make sense
 | 
						|
      self.lll_y = np.array(md.laneLines[1].y) - CAMERA_OFFSET
 | 
						|
      self.rll_y = np.array(md.laneLines[2].y) - CAMERA_OFFSET
 | 
						|
      self.lll_prob = md.laneLineProbs[1]
 | 
						|
      self.rll_prob = md.laneLineProbs[2]
 | 
						|
      self.lll_std = md.laneLineStds[1]
 | 
						|
      self.rll_std = md.laneLineStds[2]
 | 
						|
 | 
						|
    if len(md.meta.desireState):
 | 
						|
      self.l_lane_change_prob = md.meta.desireState[log.LateralPlan.Desire.laneChangeLeft]
 | 
						|
      self.r_lane_change_prob = md.meta.desireState[log.LateralPlan.Desire.laneChangeRight]
 | 
						|
 | 
						|
  def get_d_path(self, v_ego, path_t, path_xyz):
 | 
						|
    # Reduce reliance on lanelines that are too far apart or
 | 
						|
    # will be in a few seconds
 | 
						|
    l_prob, r_prob = self.lll_prob, self.rll_prob
 | 
						|
    width_pts = self.rll_y - self.lll_y
 | 
						|
    prob_mods = []
 | 
						|
    for t_check in [0.0, 1.5, 3.0]:
 | 
						|
      width_at_t = interp(t_check * (v_ego + 7), self.ll_x, width_pts)
 | 
						|
      prob_mods.append(interp(width_at_t, [4.0, 5.0], [1.0, 0.0]))
 | 
						|
    mod = min(prob_mods)
 | 
						|
    l_prob *= mod
 | 
						|
    r_prob *= mod
 | 
						|
 | 
						|
    # Reduce reliance on uncertain lanelines
 | 
						|
    l_std_mod = interp(self.lll_std, [.15, .3], [1.0, 0.0])
 | 
						|
    r_std_mod = interp(self.rll_std, [.15, .3], [1.0, 0.0])
 | 
						|
    l_prob *= l_std_mod
 | 
						|
    r_prob *= r_std_mod
 | 
						|
 | 
						|
    # Find current lanewidth
 | 
						|
    self.lane_width_certainty += 0.05 * (l_prob * r_prob - self.lane_width_certainty)
 | 
						|
    current_lane_width = abs(self.rll_y[0] - self.lll_y[0])
 | 
						|
    self.lane_width_estimate += 0.005 * (current_lane_width - self.lane_width_estimate)
 | 
						|
    speed_lane_width = interp(v_ego, [0., 31.], [2.8, 3.5])
 | 
						|
    self.lane_width = self.lane_width_certainty * self.lane_width_estimate + \
 | 
						|
                      (1 - self.lane_width_certainty) * speed_lane_width
 | 
						|
 | 
						|
    clipped_lane_width = min(4.0, self.lane_width)
 | 
						|
    path_from_left_lane = self.lll_y + clipped_lane_width / 2.0
 | 
						|
    path_from_right_lane = self.rll_y - clipped_lane_width / 2.0
 | 
						|
 | 
						|
    self.d_prob = l_prob + r_prob - l_prob * r_prob
 | 
						|
    lane_path_y = (l_prob * path_from_left_lane + r_prob * path_from_right_lane) / (l_prob + r_prob + 0.0001)
 | 
						|
    lane_path_y_interp = np.interp(path_t, self.ll_t, lane_path_y)
 | 
						|
    path_xyz[:,1] = self.d_prob * lane_path_y_interp + (1.0 - self.d_prob) * path_xyz[:,1]
 | 
						|
    return path_xyz
 | 
						|
 |