openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

189 lines
6.0 KiB

/*
* This file is part of ACADO Toolkit.
*
* ACADO Toolkit -- A Toolkit for Automatic Control and Dynamic Optimization.
* Copyright (C) 2008-2014 by Boris Houska, Hans Joachim Ferreau,
* Milan Vukov, Rien Quirynen, KU Leuven.
* Developed within the Optimization in Engineering Center (OPTEC)
* under supervision of Moritz Diehl. All rights reserved.
*
* ACADO Toolkit is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 3 of the License, or (at your option) any later version.
*
* ACADO Toolkit is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with ACADO Toolkit; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/**
* \file include/acado/objective/lsq_term.hpp
* \author Boris Houska, Hans Joachim Ferreau
*
*/
#ifndef ACADO_TOOLKIT_LSQ_TERM_HPP
#define ACADO_TOOLKIT_LSQ_TERM_HPP
#include <acado/objective/objective_element.hpp>
BEGIN_NAMESPACE_ACADO
/**
* \brief Stores and evaluates LSQ terms within optimal control problems.
*
* \ingroup BasicDataStructures
*
* The class LSQTerm allows to manage and evaluate least square objective functionals \n
* of the general form: \n
* \n
* 0.5* sum_i || S(t_i) * ( h(t_i,x(t_i),u(t_i),p(t_i),...) - r(t_i) ) ||^2_2 \n
* \n
* Here the sum is over all grid points of the objective grid. The DMatrix S is assumed to \n
* be symmetric and positive (semi-) definite. \n
*
* \author Boris Houska, Hans Joachim Ferreau
*/
class LSQTerm : public ObjectiveElement{
//
// PUBLIC MEMBER FUNCTIONS:
//
public:
/** Default constructor. */
LSQTerm( );
/** Default constructor. */
LSQTerm( const MatrixVariablesGrid *S_, /**< the weighting matrix */
const Function& h , /**< the LSQ function */
const VariablesGrid *r_ /**< the reference vectors */ );
/** Copy constructor (deep copy). */
LSQTerm( const LSQTerm& rhs );
/** Destructor. */
virtual ~LSQTerm( );
/** Assignment operator (deep copy). */
LSQTerm& operator=( const LSQTerm& rhs );
// =======================================================================================
//
// INITIALIZATION ROUTINES
//
// =======================================================================================
/** Sets the discretization grid. \n
* \n
* \return SUCCESSFUL_RETURN \n
*/
inline returnValue setGrid( const Grid &grid_ );
// =======================================================================================
//
// EVALUATION ROUTINES
//
// =======================================================================================
returnValue evaluate( const OCPiterate &x );
/** Evaluates the objective gradient contribution from this term \n
* and computes the corresponding exact hessian if hessian != 0 \n
* \n
* \return SUCCESSFUL_RETURN \n
*/
returnValue evaluateSensitivities( BlockMatrix *hessian );
/** Evaluates the objective gradient contribution from this term \n
* and computes the corresponding GN hessian approximation for \n
* the case that GNhessian != 0. \n
* \n
* \return SUCCESSFUL_RETURN \n
*/
returnValue evaluateSensitivitiesGN( BlockMatrix *GNhessian );
/** returns whether the constraint element is affine. */
inline BooleanType isAffine();
/** returns whether the constraint element is convex. */
inline BooleanType isQuadratic();
/** returns whether the constraint element is convex. */
inline BooleanType isConvex();
/** overwrites the reference vector r \n
* \n
* \return SUCCESSFUL_RETURN
*/
returnValue setReference( const VariablesGrid &ref );
// =======================================================================================
returnValue getWeigthingtMatrix( const unsigned _index, DMatrix& _matrix ) const;
//
// PROTECTED FUNCTIONS:
//
protected:
//
// DATA MEMBERS:
//
protected:
MatrixVariablesGrid *S_temp ; /**< a symmetric weighting matrix */
VariablesGrid *r_temp ; /**< a tracking reference */
DMatrix *S ; /**< a symmetric weighting matrix */
DVector *r ; /**< a tracking reference */
double **S_h_res ; /**< specific intermediate results \n
* to be stored for backward \n
* differentiation \n
*/
};
CLOSE_NAMESPACE_ACADO
#include <acado/objective/lsq_term.ipp>
#endif // ACADO_TOOLKIT_LSQ_TERM_HPP
/*
* end of file
*/