You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							42 lines
						
					
					
						
							2.0 KiB
						
					
					
				
			
		
		
	
	
							42 lines
						
					
					
						
							2.0 KiB
						
					
					
				# kernel8_batched_gmem.s from https://seb-v.github.io/optimization/update/2025/01/20/Fast-GPU-Matrix-multiplication.html
 | 
						|
# sudo PATH=/opt/homebrew/Cellar/llvm/20.1.6/bin:$PATH AMD_LLVM=0 AMD=1 DEBUG=2 python3 extra/gemm/amd_matmul.py
 | 
						|
import pathlib
 | 
						|
from dataclasses import replace
 | 
						|
from tinygrad import Tensor, Device, Context, GlobalCounters
 | 
						|
from tinygrad.helpers import getenv
 | 
						|
from tinygrad.engine.realize import CompiledRunner, ExecItem, get_program
 | 
						|
 | 
						|
N = 4096
 | 
						|
run_count = 5
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
  ast = (Tensor.empty(N, N)@Tensor.empty(N, N)).schedule()[-1].ast
 | 
						|
  prg = get_program(ast, Device.default.renderer)
 | 
						|
 | 
						|
  if getenv("ASM") == 1:
 | 
						|
    src = (pathlib.Path(__file__).parent / "amd_seb" / "kernel8_batched_gmem.s").read_text()
 | 
						|
    prgfast = replace(prg, name="kernel", src=src, global_size=[N//128, N//128, 1], local_size=[128, 1, 1])
 | 
						|
  elif getenv("ASM") == -1:
 | 
						|
    src = (pathlib.Path(__file__).parent / "amd_seb" / "kernel3_registers.cpp").read_text()
 | 
						|
    prgfast = replace(prg, name="kernel3_registers", src=src, global_size=[N//128, N//128, 1], local_size=[256, 1, 1])
 | 
						|
  elif getenv("ASM") == -2:
 | 
						|
    src = (pathlib.Path(__file__).parent / "amd_seb" / "kernel4_gmem_df.cpp").read_text()
 | 
						|
    prgfast = replace(prg, name="kernel4_gmem_db", src=src, global_size=[N//128, N//128, 1], local_size=[256, 1, 1])
 | 
						|
  else:
 | 
						|
    src = (pathlib.Path(__file__).parent / "amd_seb" / "kernel5_lds_optim.cpp").read_text()
 | 
						|
    prgfast = replace(prg, name="kernel5_lds_optim", src=src, global_size=[N//128, N//128, 1], local_size=[128, 1, 1])
 | 
						|
  runner = CompiledRunner(prgfast)
 | 
						|
 | 
						|
  a = Tensor.randn(N, N).realize()
 | 
						|
  b = Tensor.randn(N, N).realize()
 | 
						|
  c = Tensor.zeros(N, N).contiguous().realize()
 | 
						|
 | 
						|
  GlobalCounters.reset()
 | 
						|
  with Context(DEBUG=2):
 | 
						|
    for _ in range(run_count): tc = (a@b).realize()
 | 
						|
 | 
						|
  GlobalCounters.reset()
 | 
						|
  ei = ExecItem(runner, [a.uop.buffer, b.uop.buffer, c.uop.buffer])
 | 
						|
  with Context(DEBUG=2):
 | 
						|
    for _ in range(run_count): ei.run(wait=True)
 | 
						|
  print(f"custom  {(c-tc).square().mean().item()}")
 | 
						|
 |