You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							132 lines
						
					
					
						
							5.5 KiB
						
					
					
				
			
		
		
	
	
							132 lines
						
					
					
						
							5.5 KiB
						
					
					
				import os
 | 
						|
os.environ["METAL"] = "1"
 | 
						|
import time
 | 
						|
import numpy as np
 | 
						|
from tinygrad import Device, dtypes
 | 
						|
from tinygrad.helpers import getenv, flat_mv
 | 
						|
from tinygrad.runtime.ops_metal import MetalAllocator, MetalDevice, MetalProgram, MetalCompiler
 | 
						|
 | 
						|
N = getenv("N", 2048)
 | 
						|
LID = 2
 | 
						|
 | 
						|
device = MetalDevice("METAL")
 | 
						|
metalalloc = MetalAllocator(device)
 | 
						|
 | 
						|
a = metalalloc.alloc(N*N*4)
 | 
						|
b = metalalloc.alloc(N*N*4)
 | 
						|
c = metalalloc.alloc(N*N*4)
 | 
						|
 | 
						|
na = np.zeros((N,N),dtype=np.float32)
 | 
						|
nb = np.random.default_rng().standard_normal(size=(N,N), dtype=np.float32) #.astype(np.int32).astype(np.float32)N
 | 
						|
nc = np.random.default_rng().standard_normal(size=(N,N), dtype=np.float32) #.astype(np.int32).astype(np.float32)
 | 
						|
 | 
						|
metalalloc._copyin(b,nb.tobytes())
 | 
						|
metalalloc._copyin(c,nc.tobytes())
 | 
						|
 | 
						|
FLOPS = N*N*N*2
 | 
						|
BW = N*N*3*4
 | 
						|
 | 
						|
prog = MetalProgram(device, "test", MetalCompiler().compile(f"""
 | 
						|
#include <metal_stdlib>
 | 
						|
#include <metal_simdgroup_matrix>  // Available from Metal version 2.3 released with OS X 11.0+
 | 
						|
using namespace metal;
 | 
						|
kernel void test(device float *a, device const float *data1, device const float *data2, uint3 gid [[threadgroup_position_in_grid]], uint3 lid [[thread_position_in_threadgroup]]) {{
 | 
						|
  a += gid.x * 32 * {N} + (gid.y * {LID} + lid.y) * 32;
 | 
						|
  data1 += gid.x * 32 * {N};
 | 
						|
  data2 += (gid.y * {LID} + lid.y) * 32;
 | 
						|
 | 
						|
  simdgroup_float8x8 acc[4][4];
 | 
						|
  for (uint i = 0; i < 4; i++) {{
 | 
						|
    for (uint j = 0; j < 4; j++) {{
 | 
						|
      acc[i][j] = simdgroup_float8x8(0);
 | 
						|
    }}
 | 
						|
  }}
 | 
						|
 | 
						|
  simdgroup_float8x8 A[4];
 | 
						|
  simdgroup_float8x8 B[4];
 | 
						|
  for (uint k = 0; k < {N}; k+=8) {{
 | 
						|
    threadgroup_barrier(mem_flags::mem_threadgroup);
 | 
						|
    simdgroup_load(A[0], data1+k+{0*N}, {N}, ulong2(0, 0));
 | 
						|
    simdgroup_load(A[1], data1+k+{8*N}, {N}, ulong2(0, 0));
 | 
						|
    simdgroup_load(A[2], data1+k+{16*N}, {N}, ulong2(0, 0));
 | 
						|
    simdgroup_load(A[3], data1+k+{24*N}, {N}, ulong2(0, 0));
 | 
						|
    simdgroup_load(B[0], data2+0+k*{N}, {N}, ulong2(0, 0));
 | 
						|
    simdgroup_load(B[1], data2+8+k*{N}, {N}, ulong2(0, 0));
 | 
						|
    simdgroup_load(B[2], data2+16+k*{N}, {N}, ulong2(0, 0));
 | 
						|
    simdgroup_load(B[3], data2+24+k*{N}, {N}, ulong2(0, 0));
 | 
						|
 | 
						|
    simdgroup_multiply_accumulate(acc[0][0], A[0], B[0], acc[0][0]);
 | 
						|
    simdgroup_multiply_accumulate(acc[0][1], A[1], B[0], acc[0][1]);
 | 
						|
    simdgroup_multiply_accumulate(acc[0][2], A[2], B[0], acc[0][2]);
 | 
						|
    simdgroup_multiply_accumulate(acc[0][3], A[3], B[0], acc[0][3]);
 | 
						|
    simdgroup_multiply_accumulate(acc[1][0], A[0], B[1], acc[1][0]);
 | 
						|
    simdgroup_multiply_accumulate(acc[1][1], A[1], B[1], acc[1][1]);
 | 
						|
    simdgroup_multiply_accumulate(acc[1][2], A[2], B[1], acc[1][2]);
 | 
						|
    simdgroup_multiply_accumulate(acc[1][3], A[3], B[1], acc[1][3]);
 | 
						|
    simdgroup_multiply_accumulate(acc[2][0], A[0], B[2], acc[2][0]);
 | 
						|
    simdgroup_multiply_accumulate(acc[2][1], A[1], B[2], acc[2][1]);
 | 
						|
    simdgroup_multiply_accumulate(acc[2][2], A[2], B[2], acc[2][2]);
 | 
						|
    simdgroup_multiply_accumulate(acc[2][3], A[3], B[2], acc[2][3]);
 | 
						|
    simdgroup_multiply_accumulate(acc[3][0], A[0], B[3], acc[3][0]);
 | 
						|
    simdgroup_multiply_accumulate(acc[3][1], A[1], B[3], acc[3][1]);
 | 
						|
    simdgroup_multiply_accumulate(acc[3][2], A[2], B[3], acc[3][2]);
 | 
						|
    simdgroup_multiply_accumulate(acc[3][3], A[3], B[3], acc[3][3]);
 | 
						|
  }}
 | 
						|
  simdgroup_store(acc[0][0], a+{0+0*N}, {N}, ulong2(0, 0));
 | 
						|
  simdgroup_store(acc[1][0], a+{8+0*N}, {N}, ulong2(0, 0));
 | 
						|
  simdgroup_store(acc[2][0], a+{16+0*N}, {N}, ulong2(0, 0));
 | 
						|
  simdgroup_store(acc[3][0], a+{24+0*N}, {N}, ulong2(0, 0));
 | 
						|
  simdgroup_store(acc[0][1], a+{0+8*N}, {N}, ulong2(0, 0));
 | 
						|
  simdgroup_store(acc[1][1], a+{8+8*N}, {N}, ulong2(0, 0));
 | 
						|
  simdgroup_store(acc[2][1], a+{16+8*N}, {N}, ulong2(0, 0));
 | 
						|
  simdgroup_store(acc[3][1], a+{24+8*N}, {N}, ulong2(0, 0));
 | 
						|
  simdgroup_store(acc[0][2], a+{0+16*N}, {N}, ulong2(0, 0));
 | 
						|
  simdgroup_store(acc[1][2], a+{8+16*N}, {N}, ulong2(0, 0));
 | 
						|
  simdgroup_store(acc[2][2], a+{16+16*N}, {N}, ulong2(0, 0));
 | 
						|
  simdgroup_store(acc[3][2], a+{24+16*N}, {N}, ulong2(0, 0));
 | 
						|
  simdgroup_store(acc[0][3], a+{0+24*N}, {N}, ulong2(0, 0));
 | 
						|
  simdgroup_store(acc[1][3], a+{8+24*N}, {N}, ulong2(0, 0));
 | 
						|
  simdgroup_store(acc[2][3], a+{16+24*N}, {N}, ulong2(0, 0));
 | 
						|
  simdgroup_store(acc[3][3], a+{24+24*N}, {N}, ulong2(0, 0));
 | 
						|
}}"""))
 | 
						|
def timeit(fxn):
 | 
						|
  st = time.perf_counter()
 | 
						|
  et = fxn()
 | 
						|
  # NOTE: et doesn't contain the launch overhead
 | 
						|
  return time.perf_counter() - st
 | 
						|
tm = min([timeit(lambda: prog(a, b, c, global_size=[N//(8*4), N//(8*4*LID), 1], local_size=[32, LID, 1], wait=True)) for _ in range(20)])
 | 
						|
comp = nb@nc
 | 
						|
metalalloc._copyout(flat_mv(na.data), a)
 | 
						|
if N <= 32:
 | 
						|
  print(na)
 | 
						|
  print(comp)
 | 
						|
print(f"{N*N:10d} {tm*1e6:9.2f} us, would be {FLOPS*1e-9/tm:9.2f} GFLOPS matmul, {BW*1e-9/tm:.2f} GB/s")
 | 
						|
np.testing.assert_allclose(na, comp, atol=1e-3)
 | 
						|
 | 
						|
import torch, torch.mps
 | 
						|
b = torch.from_numpy(nb).to('mps')
 | 
						|
c = torch.from_numpy(nc).to('mps')
 | 
						|
 | 
						|
def torch_prog(b, c):
 | 
						|
  st = time.perf_counter()
 | 
						|
  a = b@c
 | 
						|
  torch.mps.synchronize()
 | 
						|
  return time.perf_counter() - st
 | 
						|
tm = min([torch_prog(b, c) for _ in range(20)])
 | 
						|
print(f"{N*N:10d} {tm*1e6:9.2f} us, would be {FLOPS*1e-9/tm:9.2f} GFLOPS matmul in torch")
 | 
						|
 | 
						|
from tinygrad.tensor import Tensor
 | 
						|
from tinygrad.engine.jit import TinyJit
 | 
						|
b = Tensor(nb)
 | 
						|
c = Tensor(nc)
 | 
						|
# TODO: slowness without the JIT I suspect comes from a lack of a caching allocator
 | 
						|
@TinyJit
 | 
						|
def tiny_jit(b, c):
 | 
						|
  return (b@c).realize()
 | 
						|
def tiny_prog(b, c):
 | 
						|
  st = time.perf_counter()
 | 
						|
  a = tiny_jit(b, c)
 | 
						|
  Device["METAL"].synchronize()
 | 
						|
  return time.perf_counter() - st
 | 
						|
tm = min([tiny_prog(b, c) for _ in range(20)])
 | 
						|
print(f"{N*N:10d} {tm*1e6:9.2f} us, would be {FLOPS*1e-9/tm:9.2f} GFLOPS matmul in tinygrad")
 | 
						|
 |