You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							53 lines
						
					
					
						
							2.1 KiB
						
					
					
				
			
		
		
	
	
							53 lines
						
					
					
						
							2.1 KiB
						
					
					
				import numpy as np
 | 
						|
from tinygrad import dtypes, Tensor
 | 
						|
from tinygrad.helpers import getenv, get_single_element
 | 
						|
from tinygrad.dtype import _to_np_dtype
 | 
						|
from tinygrad.codegen.opt import OptOps
 | 
						|
from tinygrad.engine.realize import lower_schedule
 | 
						|
 | 
						|
dtype_in = dtypes.half if getenv("HALF") else dtypes.bfloat16 if getenv("BFLOAT16") else dtypes.float
 | 
						|
acc_dtype = dtypes.half if getenv("ACC_HALF") else dtypes.bfloat16 if getenv("ACC_BFLOAT16") else None
 | 
						|
if getenv("INT"):  dtype_in, acc_dtype = dtypes.int8, dtypes.int32
 | 
						|
if getenv("UINT"): dtype_in, acc_dtype = dtypes.uint8, dtypes.int32
 | 
						|
 | 
						|
N = getenv("N", 4096)
 | 
						|
M = getenv("M", N)
 | 
						|
K = getenv("K", N)
 | 
						|
CNT = getenv("CNT", 10)
 | 
						|
ATOL = getenv("ATOL", 1e-4)
 | 
						|
RTOL = getenv("RTOL", 3e-2)
 | 
						|
INT_LOW = getenv("INT_LOW", 0)
 | 
						|
INT_HIGH = getenv("INT_HIGH", 10)
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
  def init_matrix(rows, cols):
 | 
						|
    rng = np.random.default_rng()
 | 
						|
    # NOTE: numpy does not support bfloat16
 | 
						|
    if (np_dtype := _to_np_dtype(dtype_in)) is None: np_dtype = np.float32
 | 
						|
    if dtype_in in dtypes.ints:
 | 
						|
      return Tensor(rng.integers(INT_LOW, INT_HIGH, (rows, cols), dtype=np_dtype)).realize()
 | 
						|
    return Tensor(rng.random((rows, cols), dtype=np.float32).astype(np_dtype)-0.5).cast(dtype_in).realize()
 | 
						|
 | 
						|
  a, b = init_matrix(M, K), init_matrix(K, N)
 | 
						|
  for i in range(CNT):
 | 
						|
    if i > 0 and getenv("RAND", 0) != 0:
 | 
						|
      a, b = init_matrix(M, K), init_matrix(K, N)
 | 
						|
    c = a.matmul(b, dtype=acc_dtype).realize()
 | 
						|
 | 
						|
  if getenv("SHOULD_USE_TC"):
 | 
						|
    sched = a.matmul(b, dtype=acc_dtype).schedule()
 | 
						|
    lowered = list(lower_schedule(sched))
 | 
						|
    ei = get_single_element(lowered)[1]
 | 
						|
    assert any(opt.op is OptOps.TC for opt in ei.prg.p.applied_opts), f"TC not triggered, {ei.prg.p.applied_opts}"
 | 
						|
 | 
						|
  ref = a.numpy().astype(np.float32) @ b.numpy().astype(np.float32)
 | 
						|
  res = c.numpy()
 | 
						|
  try:
 | 
						|
    np.testing.assert_allclose(res, ref, rtol=RTOL, atol=ATOL)
 | 
						|
  except AssertionError as e:
 | 
						|
    if getenv("DEBUG_VALUES", 0) > 0:
 | 
						|
      mismatch = np.where(~np.isclose(res, ref, rtol=RTOL, atol=ATOL))
 | 
						|
      print("Mismatch indices:", mismatch)
 | 
						|
      print("Result          :", res[mismatch])
 | 
						|
      print("Ground truth    :", ref[mismatch])
 | 
						|
    raise e
 | 
						|
 |