You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							46 lines
						
					
					
						
							1.3 KiB
						
					
					
				
			
		
		
	
	
							46 lines
						
					
					
						
							1.3 KiB
						
					
					
				# https://tvm.apache.org/docs/tutorial/tensor_expr_get_started.html#example-2-manually-optimizing-matrix-multiplication-with-te
 | 
						|
 | 
						|
M, N, K = 1024, 1024, 1024
 | 
						|
 | 
						|
try:
 | 
						|
  import tvm
 | 
						|
  from tvm import te
 | 
						|
  #print(tvm.target.Target.list_kinds())
 | 
						|
 | 
						|
  # c, opencl
 | 
						|
  target = tvm.target.Target(target="c")
 | 
						|
 | 
						|
  # TVM Matrix Multiplication using TE
 | 
						|
  k = te.reduce_axis((0, K), "k")
 | 
						|
  A = te.placeholder((M, K), name="A")
 | 
						|
  B = te.placeholder((K, N), name="B")
 | 
						|
  C = te.compute((M, N), lambda x, y: te.sum(A[x, k] * B[k, y], axis=k), name="C")
 | 
						|
 | 
						|
  # Default schedule
 | 
						|
  s = te.create_schedule(C.op)
 | 
						|
  #print(tvm.lower(s, [A, B, C], simple_mode=True))
 | 
						|
 | 
						|
  # Output C code
 | 
						|
  func = tvm.build(s, [A, B, C], target=target, name="mmult")
 | 
						|
  print(func.get_source())
 | 
						|
except ImportError:
 | 
						|
  print("** please install TVM for TVM output")
 | 
						|
 | 
						|
# tinygrad version
 | 
						|
 | 
						|
import os
 | 
						|
from tinygrad.tensor import Tensor
 | 
						|
 | 
						|
# define the compute
 | 
						|
A = Tensor.rand(M, K, device="CPU")
 | 
						|
B = Tensor.rand(K, N, device="CPU")
 | 
						|
C = (A.reshape(M, 1, K) * B.permute(1,0).reshape(1, N, K)).sum(axis=2)
 | 
						|
 | 
						|
sched = C.schedule()
 | 
						|
from tinygrad.codegen.opt.kernel import Kernel
 | 
						|
from tinygrad.device import CompilerOptions
 | 
						|
lin = Kernel(sched[-1].ast, CompilerOptions(has_local=False, supports_float4=False))
 | 
						|
lin.to_program()
 | 
						|
from tinygrad.runtime.ops_cpu import renderer
 | 
						|
src = renderer("mmult", lin.uops)
 | 
						|
print(src)
 | 
						|
 |