openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

124 lines
5.3 KiB

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2016 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SPECIALFUNCTIONS_ARRAYAPI_H
#define EIGEN_SPECIALFUNCTIONS_ARRAYAPI_H
namespace Eigen {
/** \cpp11 \returns an expression of the coefficient-wise igamma(\a a, \a x) to the given arrays.
*
* This function computes the coefficient-wise incomplete gamma function.
*
* \note This function supports only float and double scalar types in c++11 mode. To support other scalar types,
* or float/double in non c++11 mode, the user has to provide implementations of igammac(T,T) for any scalar
* type T to be supported.
*
* \sa Eigen::igammac(), Eigen::lgamma()
*/
template<typename Derived,typename ExponentDerived>
inline const Eigen::CwiseBinaryOp<Eigen::internal::scalar_igamma_op<typename Derived::Scalar>, const Derived, const ExponentDerived>
igamma(const Eigen::ArrayBase<Derived>& a, const Eigen::ArrayBase<ExponentDerived>& x)
{
return Eigen::CwiseBinaryOp<Eigen::internal::scalar_igamma_op<typename Derived::Scalar>, const Derived, const ExponentDerived>(
a.derived(),
x.derived()
);
}
/** \cpp11 \returns an expression of the coefficient-wise igammac(\a a, \a x) to the given arrays.
*
* This function computes the coefficient-wise complementary incomplete gamma function.
*
* \note This function supports only float and double scalar types in c++11 mode. To support other scalar types,
* or float/double in non c++11 mode, the user has to provide implementations of igammac(T,T) for any scalar
* type T to be supported.
*
* \sa Eigen::igamma(), Eigen::lgamma()
*/
template<typename Derived,typename ExponentDerived>
inline const Eigen::CwiseBinaryOp<Eigen::internal::scalar_igammac_op<typename Derived::Scalar>, const Derived, const ExponentDerived>
igammac(const Eigen::ArrayBase<Derived>& a, const Eigen::ArrayBase<ExponentDerived>& x)
{
return Eigen::CwiseBinaryOp<Eigen::internal::scalar_igammac_op<typename Derived::Scalar>, const Derived, const ExponentDerived>(
a.derived(),
x.derived()
);
}
/** \cpp11 \returns an expression of the coefficient-wise polygamma(\a n, \a x) to the given arrays.
*
* It returns the \a n -th derivative of the digamma(psi) evaluated at \c x.
*
* \note This function supports only float and double scalar types in c++11 mode. To support other scalar types,
* or float/double in non c++11 mode, the user has to provide implementations of polygamma(T,T) for any scalar
* type T to be supported.
*
* \sa Eigen::digamma()
*/
// * \warning Be careful with the order of the parameters: x.polygamma(n) is equivalent to polygamma(n,x)
// * \sa ArrayBase::polygamma()
template<typename DerivedN,typename DerivedX>
inline const Eigen::CwiseBinaryOp<Eigen::internal::scalar_polygamma_op<typename DerivedX::Scalar>, const DerivedN, const DerivedX>
polygamma(const Eigen::ArrayBase<DerivedN>& n, const Eigen::ArrayBase<DerivedX>& x)
{
return Eigen::CwiseBinaryOp<Eigen::internal::scalar_polygamma_op<typename DerivedX::Scalar>, const DerivedN, const DerivedX>(
n.derived(),
x.derived()
);
}
/** \cpp11 \returns an expression of the coefficient-wise betainc(\a x, \a a, \a b) to the given arrays.
*
* This function computes the regularized incomplete beta function (integral).
*
* \note This function supports only float and double scalar types in c++11 mode. To support other scalar types,
* or float/double in non c++11 mode, the user has to provide implementations of betainc(T,T,T) for any scalar
* type T to be supported.
*
* \sa Eigen::betainc(), Eigen::lgamma()
*/
template<typename ArgADerived, typename ArgBDerived, typename ArgXDerived>
inline const Eigen::CwiseTernaryOp<Eigen::internal::scalar_betainc_op<typename ArgXDerived::Scalar>, const ArgADerived, const ArgBDerived, const ArgXDerived>
betainc(const Eigen::ArrayBase<ArgADerived>& a, const Eigen::ArrayBase<ArgBDerived>& b, const Eigen::ArrayBase<ArgXDerived>& x)
{
return Eigen::CwiseTernaryOp<Eigen::internal::scalar_betainc_op<typename ArgXDerived::Scalar>, const ArgADerived, const ArgBDerived, const ArgXDerived>(
a.derived(),
b.derived(),
x.derived()
);
}
/** \returns an expression of the coefficient-wise zeta(\a x, \a q) to the given arrays.
*
* It returns the Riemann zeta function of two arguments \a x and \a q:
*
* \param x is the exposent, it must be > 1
* \param q is the shift, it must be > 0
*
* \note This function supports only float and double scalar types. To support other scalar types, the user has
* to provide implementations of zeta(T,T) for any scalar type T to be supported.
*
* \sa ArrayBase::zeta()
*/
template<typename DerivedX,typename DerivedQ>
inline const Eigen::CwiseBinaryOp<Eigen::internal::scalar_zeta_op<typename DerivedX::Scalar>, const DerivedX, const DerivedQ>
zeta(const Eigen::ArrayBase<DerivedX>& x, const Eigen::ArrayBase<DerivedQ>& q)
{
return Eigen::CwiseBinaryOp<Eigen::internal::scalar_zeta_op<typename DerivedX::Scalar>, const DerivedX, const DerivedQ>(
x.derived(),
q.derived()
);
}
} // end namespace Eigen
#endif // EIGEN_SPECIALFUNCTIONS_ARRAYAPI_H