openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

240 lines
6.4 KiB

# ifndef CPPAD_LOCAL_SIN_OP_HPP
# define CPPAD_LOCAL_SIN_OP_HPP
/* --------------------------------------------------------------------------
CppAD: C++ Algorithmic Differentiation: Copyright (C) 2003-17 Bradley M. Bell
CppAD is distributed under multiple licenses. This distribution is under
the terms of the
Eclipse Public License Version 1.0.
A copy of this license is included in the COPYING file of this distribution.
Please visit http://www.coin-or.org/CppAD/ for information on other licenses.
-------------------------------------------------------------------------- */
namespace CppAD { namespace local { // BEGIN_CPPAD_LOCAL_NAMESPACE
/*!
\file sin_op.hpp
Forward and reverse mode calculations for z = sin(x).
*/
/*!
Compute forward mode Taylor coefficient for result of op = SinOp.
The C++ source code corresponding to this operation is
\verbatim
z = sin(x)
\endverbatim
The auxillary result is
\verbatim
y = cos(x)
\endverbatim
The value of y, and its derivatives, are computed along with the value
and derivatives of z.
\copydetails CppAD::local::forward_unary2_op
*/
template <class Base>
inline void forward_sin_op(
size_t p ,
size_t q ,
size_t i_z ,
size_t i_x ,
size_t cap_order ,
Base* taylor )
{
// check assumptions
CPPAD_ASSERT_UNKNOWN( NumArg(SinOp) == 1 );
CPPAD_ASSERT_UNKNOWN( NumRes(SinOp) == 2 );
CPPAD_ASSERT_UNKNOWN( q < cap_order );
CPPAD_ASSERT_UNKNOWN( p <= q );
// Taylor coefficients corresponding to argument and result
Base* x = taylor + i_x * cap_order;
Base* s = taylor + i_z * cap_order;
Base* c = s - cap_order;
// rest of this routine is identical for the following cases:
// forward_sin_op, forward_cos_op, forward_sinh_op, forward_cosh_op.
// (except that there is a sign difference for the hyperbolic case).
size_t k;
if( p == 0 )
{ s[0] = sin( x[0] );
c[0] = cos( x[0] );
p++;
}
for(size_t j = p; j <= q; j++)
{
s[j] = Base(0.0);
c[j] = Base(0.0);
for(k = 1; k <= j; k++)
{ s[j] += Base(double(k)) * x[k] * c[j-k];
c[j] -= Base(double(k)) * x[k] * s[j-k];
}
s[j] /= Base(double(j));
c[j] /= Base(double(j));
}
}
/*!
Compute forward mode Taylor coefficient for result of op = SinOp.
The C++ source code corresponding to this operation is
\verbatim
z = sin(x)
\endverbatim
The auxillary result is
\verbatim
y = cos(x)
\endverbatim
The value of y, and its derivatives, are computed along with the value
and derivatives of z.
\copydetails CppAD::local::forward_unary2_op_dir
*/
template <class Base>
inline void forward_sin_op_dir(
size_t q ,
size_t r ,
size_t i_z ,
size_t i_x ,
size_t cap_order ,
Base* taylor )
{
// check assumptions
CPPAD_ASSERT_UNKNOWN( NumArg(SinOp) == 1 );
CPPAD_ASSERT_UNKNOWN( NumRes(SinOp) == 2 );
CPPAD_ASSERT_UNKNOWN( 0 < q );
CPPAD_ASSERT_UNKNOWN( q < cap_order );
// Taylor coefficients corresponding to argument and result
size_t num_taylor_per_var = (cap_order-1) * r + 1;
Base* x = taylor + i_x * num_taylor_per_var;
Base* s = taylor + i_z * num_taylor_per_var;
Base* c = s - num_taylor_per_var;
// rest of this routine is identical for the following cases:
// forward_sin_op, forward_cos_op, forward_sinh_op, forward_cosh_op
// (except that there is a sign difference for the hyperbolic case).
size_t m = (q-1) * r + 1;
for(size_t ell = 0; ell < r; ell++)
{ s[m+ell] = Base(double(q)) * x[m + ell] * c[0];
c[m+ell] = - Base(double(q)) * x[m + ell] * s[0];
for(size_t k = 1; k < q; k++)
{ s[m+ell] += Base(double(k)) * x[(k-1)*r+1+ell] * c[(q-k-1)*r+1+ell];
c[m+ell] -= Base(double(k)) * x[(k-1)*r+1+ell] * s[(q-k-1)*r+1+ell];
}
s[m+ell] /= Base(double(q));
c[m+ell] /= Base(double(q));
}
}
/*!
Compute zero order forward mode Taylor coefficient for result of op = SinOp.
The C++ source code corresponding to this operation is
\verbatim
z = sin(x)
\endverbatim
The auxillary result is
\verbatim
y = cos(x)
\endverbatim
The value of y is computed along with the value of z.
\copydetails CppAD::local::forward_unary2_op_0
*/
template <class Base>
inline void forward_sin_op_0(
size_t i_z ,
size_t i_x ,
size_t cap_order ,
Base* taylor )
{
// check assumptions
CPPAD_ASSERT_UNKNOWN( NumArg(SinOp) == 1 );
CPPAD_ASSERT_UNKNOWN( NumRes(SinOp) == 2 );
CPPAD_ASSERT_UNKNOWN( 0 < cap_order );
// Taylor coefficients corresponding to argument and result
Base* x = taylor + i_x * cap_order;
Base* s = taylor + i_z * cap_order; // called z in documentation
Base* c = s - cap_order; // called y in documentation
s[0] = sin( x[0] );
c[0] = cos( x[0] );
}
/*!
Compute reverse mode partial derivatives for result of op = SinOp.
The C++ source code corresponding to this operation is
\verbatim
z = sin(x)
\endverbatim
The auxillary result is
\verbatim
y = cos(x)
\endverbatim
The value of y is computed along with the value of z.
\copydetails CppAD::local::reverse_unary2_op
*/
template <class Base>
inline void reverse_sin_op(
size_t d ,
size_t i_z ,
size_t i_x ,
size_t cap_order ,
const Base* taylor ,
size_t nc_partial ,
Base* partial )
{
// check assumptions
CPPAD_ASSERT_UNKNOWN( NumArg(SinOp) == 1 );
CPPAD_ASSERT_UNKNOWN( NumRes(SinOp) == 2 );
CPPAD_ASSERT_UNKNOWN( d < cap_order );
CPPAD_ASSERT_UNKNOWN( d < nc_partial );
// Taylor coefficients and partials corresponding to argument
const Base* x = taylor + i_x * cap_order;
Base* px = partial + i_x * nc_partial;
// Taylor coefficients and partials corresponding to first result
const Base* s = taylor + i_z * cap_order; // called z in doc
Base* ps = partial + i_z * nc_partial;
// Taylor coefficients and partials corresponding to auxillary result
const Base* c = s - cap_order; // called y in documentation
Base* pc = ps - nc_partial;
// rest of this routine is identical for the following cases:
// reverse_sin_op, reverse_cos_op, reverse_sinh_op, reverse_cosh_op.
size_t j = d;
size_t k;
while(j)
{
ps[j] /= Base(double(j));
pc[j] /= Base(double(j));
for(k = 1; k <= j; k++)
{
px[k] += Base(double(k)) * azmul(ps[j], c[j-k]);
px[k] -= Base(double(k)) * azmul(pc[j], s[j-k]);
ps[j-k] -= Base(double(k)) * azmul(pc[j], x[k]);
pc[j-k] += Base(double(k)) * azmul(ps[j], x[k]);
}
--j;
}
px[0] += azmul(ps[0], c[0]);
px[0] -= azmul(pc[0], s[0]);
}
} } // END_CPPAD_LOCAL_NAMESPACE
# endif