openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

882 lines
38 KiB

#!/usr/bin/env python3
import os
import math
from typing import SupportsFloat
from cereal import car, log
from common.numpy_fast import clip
from common.realtime import sec_since_boot, config_realtime_process, Priority, Ratekeeper, DT_CTRL
from common.profiler import Profiler
from common.params import Params, put_nonblocking
import cereal.messaging as messaging
from common.conversions import Conversions as CV
from panda import ALTERNATIVE_EXPERIENCE
from system.swaglog import cloudlog
from system.version import is_release_branch, get_short_branch
from selfdrive.boardd.boardd import can_list_to_can_capnp
from selfdrive.car.car_helpers import get_car, get_startup_event, get_one_can
from selfdrive.controls.lib.lateral_planner import CAMERA_OFFSET
from selfdrive.controls.lib.drive_helpers import VCruiseHelper, get_lag_adjusted_curvature
from selfdrive.controls.lib.latcontrol import LatControl, MIN_LATERAL_CONTROL_SPEED
from selfdrive.controls.lib.longcontrol import LongControl
from selfdrive.controls.lib.latcontrol_pid import LatControlPID
from selfdrive.controls.lib.latcontrol_angle import LatControlAngle, STEER_ANGLE_SATURATION_THRESHOLD
from selfdrive.controls.lib.latcontrol_torque import LatControlTorque
from selfdrive.controls.lib.events import Events, ET
from selfdrive.controls.lib.alertmanager import AlertManager, set_offroad_alert
from selfdrive.controls.lib.vehicle_model import VehicleModel
from system.hardware import HARDWARE
SOFT_DISABLE_TIME = 3 # seconds
LDW_MIN_SPEED = 31 * CV.MPH_TO_MS
LANE_DEPARTURE_THRESHOLD = 0.1
REPLAY = "REPLAY" in os.environ
SIMULATION = "SIMULATION" in os.environ
TESTING_CLOSET = "TESTING_CLOSET" in os.environ
NOSENSOR = "NOSENSOR" in os.environ
IGNORE_PROCESSES = {"loggerd", "encoderd", "statsd"}
ThermalStatus = log.DeviceState.ThermalStatus
State = log.ControlsState.OpenpilotState
PandaType = log.PandaState.PandaType
Desire = log.LateralPlan.Desire
LaneChangeState = log.LateralPlan.LaneChangeState
LaneChangeDirection = log.LateralPlan.LaneChangeDirection
EventName = car.CarEvent.EventName
ButtonType = car.CarState.ButtonEvent.Type
SafetyModel = car.CarParams.SafetyModel
IGNORED_SAFETY_MODES = (SafetyModel.silent, SafetyModel.noOutput)
CSID_MAP = {"1": EventName.roadCameraError, "2": EventName.wideRoadCameraError, "0": EventName.driverCameraError}
ACTUATOR_FIELDS = tuple(car.CarControl.Actuators.schema.fields.keys())
ACTIVE_STATES = (State.enabled, State.softDisabling, State.overriding)
ENABLED_STATES = (State.preEnabled, *ACTIVE_STATES)
class Controls:
def __init__(self, sm=None, pm=None, can_sock=None, CI=None):
config_realtime_process(4, Priority.CTRL_HIGH)
# Ensure the current branch is cached, otherwise the first iteration of controlsd lags
self.branch = get_short_branch("")
# Setup sockets
self.pm = pm
if self.pm is None:
self.pm = messaging.PubMaster(['sendcan', 'controlsState', 'carState',
'carControl', 'carEvents', 'carParams'])
self.camera_packets = ["roadCameraState", "driverCameraState", "wideRoadCameraState"]
self.can_sock = can_sock
if can_sock is None:
can_timeout = None if os.environ.get('NO_CAN_TIMEOUT', False) else 20
self.can_sock = messaging.sub_sock('can', timeout=can_timeout)
self.log_sock = messaging.sub_sock('androidLog')
self.params = Params()
self.sm = sm
if self.sm is None:
ignore = ['testJoystick']
if SIMULATION:
ignore += ['driverCameraState', 'managerState']
if self.params.get_bool('WideCameraOnly'):
ignore += ['roadCameraState']
self.sm = messaging.SubMaster(['deviceState', 'pandaStates', 'peripheralState', 'modelV2', 'liveCalibration',
'driverMonitoringState', 'longitudinalPlan', 'lateralPlan', 'liveLocationKalman',
'managerState', 'liveParameters', 'radarState', 'liveTorqueParameters', 'testJoystick'] + self.camera_packets,
ignore_alive=ignore, ignore_avg_freq=['radarState', 'testJoystick'])
if CI is None:
# wait for one pandaState and one CAN packet
print("Waiting for CAN messages...")
get_one_can(self.can_sock)
num_pandas = len(messaging.recv_one_retry(self.sm.sock['pandaStates']).pandaStates)
experimental_long_allowed = self.params.get_bool("ExperimentalLongitudinalEnabled") and not is_release_branch()
self.CI, self.CP = get_car(self.can_sock, self.pm.sock['sendcan'], experimental_long_allowed, num_pandas)
else:
self.CI, self.CP = CI, CI.CP
self.joystick_mode = self.params.get_bool("JoystickDebugMode") or self.CP.notCar
# set alternative experiences from parameters
self.disengage_on_accelerator = self.params.get_bool("DisengageOnAccelerator")
self.CP.alternativeExperience = 0
if not self.disengage_on_accelerator:
self.CP.alternativeExperience |= ALTERNATIVE_EXPERIENCE.DISABLE_DISENGAGE_ON_GAS
# read params
self.is_metric = self.params.get_bool("IsMetric")
self.is_ldw_enabled = self.params.get_bool("IsLdwEnabled")
openpilot_enabled_toggle = self.params.get_bool("OpenpilotEnabledToggle")
passive = self.params.get_bool("Passive") or not openpilot_enabled_toggle
# detect sound card presence and ensure successful init
sounds_available = HARDWARE.get_sound_card_online()
car_recognized = self.CP.carName != 'mock'
controller_available = self.CI.CC is not None and not passive and not self.CP.dashcamOnly
self.read_only = not car_recognized or not controller_available or self.CP.dashcamOnly
if self.read_only:
safety_config = car.CarParams.SafetyConfig.new_message()
safety_config.safetyModel = car.CarParams.SafetyModel.noOutput
self.CP.safetyConfigs = [safety_config]
# Write CarParams for radard
cp_bytes = self.CP.to_bytes()
self.params.put("CarParams", cp_bytes)
put_nonblocking("CarParamsCache", cp_bytes)
put_nonblocking("CarParamsPersistent", cp_bytes)
# cleanup old params
if not self.CP.experimentalLongitudinalAvailable or is_release_branch():
self.params.remove("ExperimentalLongitudinalEnabled")
if not self.CP.openpilotLongitudinalControl:
self.params.remove("ExperimentalMode")
self.CC = car.CarControl.new_message()
self.CS_prev = car.CarState.new_message()
self.AM = AlertManager()
self.events = Events()
self.LoC = LongControl(self.CP)
self.VM = VehicleModel(self.CP)
self.LaC: LatControl
if self.CP.steerControlType == car.CarParams.SteerControlType.angle:
self.LaC = LatControlAngle(self.CP, self.CI)
elif self.CP.lateralTuning.which() == 'pid':
self.LaC = LatControlPID(self.CP, self.CI)
elif self.CP.lateralTuning.which() == 'torque':
self.LaC = LatControlTorque(self.CP, self.CI)
self.initialized = False
self.state = State.disabled
self.enabled = False
self.active = False
self.soft_disable_timer = 0
self.mismatch_counter = 0
self.cruise_mismatch_counter = 0
self.can_rcv_timeout_counter = 0 # conseuctive timeout count
self.can_rcv_cum_timeout_counter = 0 # cumulative timeout count
self.last_blinker_frame = 0
self.last_steering_pressed_frame = 0
self.distance_traveled = 0
self.last_functional_fan_frame = 0
self.events_prev = []
self.current_alert_types = [ET.PERMANENT]
self.logged_comm_issue = None
self.not_running_prev = None
self.last_actuators = car.CarControl.Actuators.new_message()
self.steer_limited = False
self.desired_curvature = 0.0
self.desired_curvature_rate = 0.0
self.experimental_mode = False
self.v_cruise_helper = VCruiseHelper(self.CP)
self.recalibrating_seen = False
# TODO: no longer necessary, aside from process replay
self.sm['liveParameters'].valid = True
self.can_log_mono_time = 0
self.startup_event = get_startup_event(car_recognized, controller_available, len(self.CP.carFw) > 0)
if not sounds_available:
self.events.add(EventName.soundsUnavailable, static=True)
if not car_recognized:
self.events.add(EventName.carUnrecognized, static=True)
if len(self.CP.carFw) > 0:
set_offroad_alert("Offroad_CarUnrecognized", True)
else:
set_offroad_alert("Offroad_NoFirmware", True)
elif self.read_only:
self.events.add(EventName.dashcamMode, static=True)
elif self.joystick_mode:
self.events.add(EventName.joystickDebug, static=True)
self.startup_event = None
# controlsd is driven by can recv, expected at 100Hz
self.rk = Ratekeeper(100, print_delay_threshold=None)
self.prof = Profiler(False) # off by default
def set_initial_state(self):
if REPLAY:
controls_state = Params().get("ReplayControlsState")
if controls_state is not None:
controls_state = log.ControlsState.from_bytes(controls_state)
self.v_cruise_helper.v_cruise_kph = controls_state.vCruise
if any(ps.controlsAllowed for ps in self.sm['pandaStates']):
self.state = State.enabled
def update_events(self, CS):
"""Compute carEvents from carState"""
self.events.clear()
# Add startup event
if self.startup_event is not None:
self.events.add(self.startup_event)
self.startup_event = None
# Don't add any more events if not initialized
if not self.initialized:
self.events.add(EventName.controlsInitializing)
return
# no more events while in dashcam mode
if self.read_only:
return
# Block resume if cruise never previously enabled
resume_pressed = any(be.type in (ButtonType.accelCruise, ButtonType.resumeCruise) for be in CS.buttonEvents)
if not self.CP.pcmCruise and not self.v_cruise_helper.v_cruise_initialized and resume_pressed:
self.events.add(EventName.resumeBlocked)
# Disable on rising edge of accelerator or brake. Also disable on brake when speed > 0
if (CS.gasPressed and not self.CS_prev.gasPressed and self.disengage_on_accelerator) or \
(CS.brakePressed and (not self.CS_prev.brakePressed or not CS.standstill)) or \
(CS.regenBraking and (not self.CS_prev.regenBraking or not CS.standstill)):
self.events.add(EventName.pedalPressed)
if CS.brakePressed and CS.standstill:
self.events.add(EventName.preEnableStandstill)
if CS.gasPressed:
self.events.add(EventName.gasPressedOverride)
if not self.CP.notCar:
self.events.add_from_msg(self.sm['driverMonitoringState'].events)
# Add car events, ignore if CAN isn't valid
if CS.canValid:
self.events.add_from_msg(CS.events)
# Create events for temperature, disk space, and memory
if self.sm['deviceState'].thermalStatus >= ThermalStatus.red:
self.events.add(EventName.overheat)
if self.sm['deviceState'].freeSpacePercent < 7 and not SIMULATION:
# under 7% of space free no enable allowed
self.events.add(EventName.outOfSpace)
if self.sm['deviceState'].memoryUsagePercent > 90 and not SIMULATION:
self.events.add(EventName.lowMemory)
# TODO: enable this once loggerd CPU usage is more reasonable
#cpus = list(self.sm['deviceState'].cpuUsagePercent)
#if max(cpus, default=0) > 95 and not SIMULATION:
# self.events.add(EventName.highCpuUsage)
# Alert if fan isn't spinning for 5 seconds
if self.sm['peripheralState'].pandaType != log.PandaState.PandaType.unknown:
if self.sm['peripheralState'].fanSpeedRpm < 500 and self.sm['deviceState'].fanSpeedPercentDesired > 50:
# allow enough time for the fan controller in the panda to recover from stalls
if (self.sm.frame - self.last_functional_fan_frame) * DT_CTRL > 15.0:
self.events.add(EventName.fanMalfunction)
else:
self.last_functional_fan_frame = self.sm.frame
# Handle calibration status
cal_status = self.sm['liveCalibration'].calStatus
if cal_status != log.LiveCalibrationData.Status.calibrated:
if cal_status == log.LiveCalibrationData.Status.uncalibrated:
self.events.add(EventName.calibrationIncomplete)
elif cal_status == log.LiveCalibrationData.Status.recalibrating:
if not self.recalibrating_seen:
set_offroad_alert("Offroad_Recalibration", True)
self.recalibrating_seen = True
self.events.add(EventName.calibrationRecalibrating)
else:
self.events.add(EventName.calibrationInvalid)
# Handle lane change
if self.sm['lateralPlan'].laneChangeState == LaneChangeState.preLaneChange:
direction = self.sm['lateralPlan'].laneChangeDirection
if (CS.leftBlindspot and direction == LaneChangeDirection.left) or \
(CS.rightBlindspot and direction == LaneChangeDirection.right):
self.events.add(EventName.laneChangeBlocked)
else:
if direction == LaneChangeDirection.left:
self.events.add(EventName.preLaneChangeLeft)
else:
self.events.add(EventName.preLaneChangeRight)
elif self.sm['lateralPlan'].laneChangeState in (LaneChangeState.laneChangeStarting,
LaneChangeState.laneChangeFinishing):
self.events.add(EventName.laneChange)
for i, pandaState in enumerate(self.sm['pandaStates']):
# All pandas must match the list of safetyConfigs, and if outside this list, must be silent or noOutput
if i < len(self.CP.safetyConfigs):
safety_mismatch = pandaState.safetyModel != self.CP.safetyConfigs[i].safetyModel or \
pandaState.safetyParam != self.CP.safetyConfigs[i].safetyParam or \
pandaState.alternativeExperience != self.CP.alternativeExperience
else:
safety_mismatch = pandaState.safetyModel not in IGNORED_SAFETY_MODES
if safety_mismatch or pandaState.safetyRxChecksInvalid or self.mismatch_counter >= 200:
self.events.add(EventName.controlsMismatch)
if log.PandaState.FaultType.relayMalfunction in pandaState.faults:
self.events.add(EventName.relayMalfunction)
# Handle HW and system malfunctions
# Order is very intentional here. Be careful when modifying this.
# All events here should at least have NO_ENTRY and SOFT_DISABLE.
num_events = len(self.events)
not_running = {p.name for p in self.sm['managerState'].processes if not p.running and p.shouldBeRunning}
if self.sm.rcv_frame['managerState'] and (not_running - IGNORE_PROCESSES):
self.events.add(EventName.processNotRunning)
if not_running != self.not_running_prev:
cloudlog.event("process_not_running", not_running=not_running, error=True)
self.not_running_prev = not_running
else:
if not SIMULATION and not self.rk.lagging:
if not self.sm.all_alive(self.camera_packets):
self.events.add(EventName.cameraMalfunction)
elif not self.sm.all_freq_ok(self.camera_packets):
self.events.add(EventName.cameraFrameRate)
if not REPLAY and self.rk.lagging:
self.events.add(EventName.controlsdLagging)
if len(self.sm['radarState'].radarErrors) or (not self.rk.lagging and not self.sm.all_checks(['radarState'])):
self.events.add(EventName.radarFault)
if not self.sm.valid['pandaStates']:
self.events.add(EventName.usbError)
if CS.canTimeout:
self.events.add(EventName.canBusMissing)
elif not CS.canValid:
self.events.add(EventName.canError)
# generic catch-all. ideally, a more specific event should be added above instead
can_rcv_timeout = self.can_rcv_timeout_counter >= 5
has_disable_events = self.events.any(ET.NO_ENTRY) and (self.events.any(ET.SOFT_DISABLE) or self.events.any(ET.IMMEDIATE_DISABLE))
no_system_errors = (not has_disable_events) or (len(self.events) == num_events)
if (not self.sm.all_checks() or can_rcv_timeout) and no_system_errors:
if not self.sm.all_alive():
self.events.add(EventName.commIssue)
elif not self.sm.all_freq_ok():
self.events.add(EventName.commIssueAvgFreq)
else: # invalid or can_rcv_timeout.
self.events.add(EventName.commIssue)
logs = {
'invalid': [s for s, valid in self.sm.valid.items() if not valid],
'not_alive': [s for s, alive in self.sm.alive.items() if not alive],
'not_freq_ok': [s for s, freq_ok in self.sm.freq_ok.items() if not freq_ok],
'can_rcv_timeout': can_rcv_timeout,
}
if logs != self.logged_comm_issue:
cloudlog.event("commIssue", error=True, **logs)
self.logged_comm_issue = logs
else:
self.logged_comm_issue = None
if not self.sm['liveParameters'].valid and not TESTING_CLOSET:
self.events.add(EventName.vehicleModelInvalid)
if not self.sm['lateralPlan'].mpcSolutionValid:
self.events.add(EventName.plannerError)
if not (self.sm['liveParameters'].sensorValid or self.sm['liveLocationKalman'].sensorsOK) and not NOSENSOR:
if self.sm.frame > 5 / DT_CTRL: # Give locationd some time to receive all the inputs
self.events.add(EventName.sensorDataInvalid)
if not self.sm['liveLocationKalman'].posenetOK:
self.events.add(EventName.posenetInvalid)
if not self.sm['liveLocationKalman'].deviceStable:
self.events.add(EventName.deviceFalling)
if not REPLAY:
# Check for mismatch between openpilot and car's PCM
cruise_mismatch = CS.cruiseState.enabled and (not self.enabled or not self.CP.pcmCruise)
self.cruise_mismatch_counter = self.cruise_mismatch_counter + 1 if cruise_mismatch else 0
if self.cruise_mismatch_counter > int(6. / DT_CTRL):
self.events.add(EventName.cruiseMismatch)
# Check for FCW
stock_long_is_braking = self.enabled and not self.CP.openpilotLongitudinalControl and CS.aEgo < -1.25
model_fcw = self.sm['modelV2'].meta.hardBrakePredicted and not CS.brakePressed and not stock_long_is_braking
planner_fcw = self.sm['longitudinalPlan'].fcw and self.enabled
if planner_fcw or model_fcw:
self.events.add(EventName.fcw)
for m in messaging.drain_sock(self.log_sock, wait_for_one=False):
try:
msg = m.androidLog.message
if any(err in msg for err in ("ERROR_CRC", "ERROR_ECC", "ERROR_STREAM_UNDERFLOW", "APPLY FAILED")):
csid = msg.split("CSID:")[-1].split(" ")[0]
evt = CSID_MAP.get(csid, None)
if evt is not None:
self.events.add(evt)
except UnicodeDecodeError:
pass
# TODO: fix simulator
if not SIMULATION:
if not NOSENSOR:
if not self.sm['liveLocationKalman'].gpsOK and self.sm['liveLocationKalman'].inputsOK and (self.distance_traveled > 1000):
# Not show in first 1 km to allow for driving out of garage. This event shows after 5 minutes
self.events.add(EventName.noGps)
if self.sm['modelV2'].frameDropPerc > 20:
self.events.add(EventName.modeldLagging)
if self.sm['liveLocationKalman'].excessiveResets:
self.events.add(EventName.localizerMalfunction)
def data_sample(self):
"""Receive data from sockets and update carState"""
# Update carState from CAN
can_strs = messaging.drain_sock_raw(self.can_sock, wait_for_one=True)
CS = self.CI.update(self.CC, can_strs)
if len(can_strs) and REPLAY:
self.can_log_mono_time = messaging.log_from_bytes(can_strs[0]).logMonoTime
self.sm.update(0)
if not self.initialized:
all_valid = CS.canValid and self.sm.all_checks()
timed_out = self.sm.frame * DT_CTRL > (6. if REPLAY else 3.5)
if all_valid or timed_out or SIMULATION:
if not self.read_only:
self.CI.init(self.CP, self.can_sock, self.pm.sock['sendcan'])
self.initialized = True
self.set_initial_state()
Params().put_bool("ControlsReady", True)
# Check for CAN timeout
if not can_strs:
self.can_rcv_timeout_counter += 1
self.can_rcv_cum_timeout_counter += 1
else:
self.can_rcv_timeout_counter = 0
# When the panda and controlsd do not agree on controls_allowed
# we want to disengage openpilot. However the status from the panda goes through
# another socket other than the CAN messages and one can arrive earlier than the other.
# Therefore we allow a mismatch for two samples, then we trigger the disengagement.
if not self.enabled:
self.mismatch_counter = 0
# All pandas not in silent mode must have controlsAllowed when openpilot is enabled
if self.enabled and any(not ps.controlsAllowed for ps in self.sm['pandaStates']
if ps.safetyModel not in IGNORED_SAFETY_MODES):
self.mismatch_counter += 1
self.distance_traveled += CS.vEgo * DT_CTRL
return CS
def state_transition(self, CS):
"""Compute conditional state transitions and execute actions on state transitions"""
self.v_cruise_helper.update_v_cruise(CS, self.enabled, self.is_metric)
# decrement the soft disable timer at every step, as it's reset on
# entrance in SOFT_DISABLING state
self.soft_disable_timer = max(0, self.soft_disable_timer - 1)
self.current_alert_types = [ET.PERMANENT]
# ENABLED, SOFT DISABLING, PRE ENABLING, OVERRIDING
if self.state != State.disabled:
# user and immediate disable always have priority in a non-disabled state
if self.events.any(ET.USER_DISABLE):
self.state = State.disabled
self.current_alert_types.append(ET.USER_DISABLE)
elif self.events.any(ET.IMMEDIATE_DISABLE):
self.state = State.disabled
self.current_alert_types.append(ET.IMMEDIATE_DISABLE)
else:
# ENABLED
if self.state == State.enabled:
if self.events.any(ET.SOFT_DISABLE):
self.state = State.softDisabling
self.soft_disable_timer = int(SOFT_DISABLE_TIME / DT_CTRL)
self.current_alert_types.append(ET.SOFT_DISABLE)
elif self.events.any(ET.OVERRIDE_LATERAL) or self.events.any(ET.OVERRIDE_LONGITUDINAL):
self.state = State.overriding
self.current_alert_types += [ET.OVERRIDE_LATERAL, ET.OVERRIDE_LONGITUDINAL]
# SOFT DISABLING
elif self.state == State.softDisabling:
if not self.events.any(ET.SOFT_DISABLE):
# no more soft disabling condition, so go back to ENABLED
self.state = State.enabled
elif self.soft_disable_timer > 0:
self.current_alert_types.append(ET.SOFT_DISABLE)
elif self.soft_disable_timer <= 0:
self.state = State.disabled
# PRE ENABLING
elif self.state == State.preEnabled:
if not self.events.any(ET.PRE_ENABLE):
self.state = State.enabled
else:
self.current_alert_types.append(ET.PRE_ENABLE)
# OVERRIDING
elif self.state == State.overriding:
if self.events.any(ET.SOFT_DISABLE):
self.state = State.softDisabling
self.soft_disable_timer = int(SOFT_DISABLE_TIME / DT_CTRL)
self.current_alert_types.append(ET.SOFT_DISABLE)
elif not (self.events.any(ET.OVERRIDE_LATERAL) or self.events.any(ET.OVERRIDE_LONGITUDINAL)):
self.state = State.enabled
else:
self.current_alert_types += [ET.OVERRIDE_LATERAL, ET.OVERRIDE_LONGITUDINAL]
# DISABLED
elif self.state == State.disabled:
if self.events.any(ET.ENABLE):
if self.events.any(ET.NO_ENTRY):
self.current_alert_types.append(ET.NO_ENTRY)
else:
if self.events.any(ET.PRE_ENABLE):
self.state = State.preEnabled
elif self.events.any(ET.OVERRIDE_LATERAL) or self.events.any(ET.OVERRIDE_LONGITUDINAL):
self.state = State.overriding
else:
self.state = State.enabled
self.current_alert_types.append(ET.ENABLE)
self.v_cruise_helper.initialize_v_cruise(CS, self.experimental_mode)
# Check if openpilot is engaged and actuators are enabled
self.enabled = self.state in ENABLED_STATES
self.active = self.state in ACTIVE_STATES
if self.active:
self.current_alert_types.append(ET.WARNING)
def state_control(self, CS):
"""Given the state, this function returns a CarControl packet"""
# Update VehicleModel
lp = self.sm['liveParameters']
x = max(lp.stiffnessFactor, 0.1)
sr = max(lp.steerRatio, 0.1)
self.VM.update_params(x, sr)
# Update Torque Params
if self.CP.lateralTuning.which() == 'torque':
torque_params = self.sm['liveTorqueParameters']
if self.sm.all_checks(['liveTorqueParameters']) and torque_params.useParams:
self.LaC.update_live_torque_params(torque_params.latAccelFactorFiltered, torque_params.latAccelOffsetFiltered, torque_params.frictionCoefficientFiltered)
lat_plan = self.sm['lateralPlan']
long_plan = self.sm['longitudinalPlan']
CC = car.CarControl.new_message()
CC.enabled = self.enabled
# Check which actuators can be enabled
standstill = CS.vEgo <= max(self.CP.minSteerSpeed, MIN_LATERAL_CONTROL_SPEED) or CS.standstill
CC.latActive = self.active and not CS.steerFaultTemporary and not CS.steerFaultPermanent and \
(not standstill or self.joystick_mode)
CC.longActive = self.enabled and not self.events.any(ET.OVERRIDE_LONGITUDINAL) and self.CP.openpilotLongitudinalControl
actuators = CC.actuators
actuators.longControlState = self.LoC.long_control_state
# Enable blinkers while lane changing
if self.sm['lateralPlan'].laneChangeState != LaneChangeState.off:
CC.leftBlinker = self.sm['lateralPlan'].laneChangeDirection == LaneChangeDirection.left
CC.rightBlinker = self.sm['lateralPlan'].laneChangeDirection == LaneChangeDirection.right
if CS.leftBlinker or CS.rightBlinker:
self.last_blinker_frame = self.sm.frame
# State specific actions
if not CC.latActive:
self.LaC.reset()
if not CC.longActive:
self.LoC.reset(v_pid=CS.vEgo)
if not self.joystick_mode:
# accel PID loop
pid_accel_limits = self.CI.get_pid_accel_limits(self.CP, CS.vEgo, self.v_cruise_helper.v_cruise_kph * CV.KPH_TO_MS)
t_since_plan = (self.sm.frame - self.sm.rcv_frame['longitudinalPlan']) * DT_CTRL
actuators.accel = self.LoC.update(CC.longActive, CS, long_plan, pid_accel_limits, t_since_plan)
# Steering PID loop and lateral MPC
self.desired_curvature, self.desired_curvature_rate = get_lag_adjusted_curvature(self.CP, CS.vEgo,
lat_plan.psis,
lat_plan.curvatures,
lat_plan.curvatureRates)
actuators.steer, actuators.steeringAngleDeg, lac_log = self.LaC.update(CC.latActive, CS, self.VM, lp,
self.last_actuators, self.steer_limited, self.desired_curvature,
self.desired_curvature_rate, self.sm['liveLocationKalman'])
actuators.curvature = self.desired_curvature
else:
lac_log = log.ControlsState.LateralDebugState.new_message()
if self.sm.rcv_frame['testJoystick'] > 0:
if CC.longActive:
actuators.accel = 4.0*clip(self.sm['testJoystick'].axes[0], -1, 1)
if CC.latActive:
steer = clip(self.sm['testJoystick'].axes[1], -1, 1)
# max angle is 45 for angle-based cars
actuators.steer, actuators.steeringAngleDeg = steer, steer * 45.
lac_log.active = self.active
lac_log.steeringAngleDeg = CS.steeringAngleDeg
lac_log.output = actuators.steer
lac_log.saturated = abs(actuators.steer) >= 0.9
if CS.steeringPressed:
self.last_steering_pressed_frame = self.sm.frame
recent_steer_pressed = (self.sm.frame - self.last_steering_pressed_frame)*DT_CTRL < 2.0
# Send a "steering required alert" if saturation count has reached the limit
if lac_log.active and not recent_steer_pressed:
if self.CP.lateralTuning.which() == 'torque' and not self.joystick_mode:
undershooting = abs(lac_log.desiredLateralAccel) / abs(1e-3 + lac_log.actualLateralAccel) > 1.2
turning = abs(lac_log.desiredLateralAccel) > 1.0
good_speed = CS.vEgo > 5
max_torque = abs(self.last_actuators.steer) > 0.99
if undershooting and turning and good_speed and max_torque:
lac_log.active and self.events.add(EventName.steerSaturated)
elif lac_log.saturated:
dpath_points = lat_plan.dPathPoints
if len(dpath_points):
# Check if we deviated from the path
# TODO use desired vs actual curvature
if self.CP.steerControlType == car.CarParams.SteerControlType.angle:
steering_value = actuators.steeringAngleDeg
else:
steering_value = actuators.steer
left_deviation = steering_value > 0 and dpath_points[0] < -0.20
right_deviation = steering_value < 0 and dpath_points[0] > 0.20
if left_deviation or right_deviation:
self.events.add(EventName.steerSaturated)
# Ensure no NaNs/Infs
for p in ACTUATOR_FIELDS:
attr = getattr(actuators, p)
if not isinstance(attr, SupportsFloat):
continue
if not math.isfinite(attr):
cloudlog.error(f"actuators.{p} not finite {actuators.to_dict()}")
setattr(actuators, p, 0.0)
return CC, lac_log
def publish_logs(self, CS, start_time, CC, lac_log):
"""Send actuators and hud commands to the car, send controlsstate and MPC logging"""
# Orientation and angle rates can be useful for carcontroller
# Only calibrated (car) frame is relevant for the carcontroller
orientation_value = list(self.sm['liveLocationKalman'].calibratedOrientationNED.value)
if len(orientation_value) > 2:
CC.orientationNED = orientation_value
angular_rate_value = list(self.sm['liveLocationKalman'].angularVelocityCalibrated.value)
if len(angular_rate_value) > 2:
CC.angularVelocity = angular_rate_value
CC.cruiseControl.override = self.enabled and not CC.longActive and self.CP.openpilotLongitudinalControl
CC.cruiseControl.cancel = CS.cruiseState.enabled and (not self.enabled or not self.CP.pcmCruise)
if self.joystick_mode and self.sm.rcv_frame['testJoystick'] > 0 and self.sm['testJoystick'].buttons[0]:
CC.cruiseControl.cancel = True
speeds = self.sm['longitudinalPlan'].speeds
if len(speeds):
CC.cruiseControl.resume = self.enabled and CS.cruiseState.standstill and speeds[-1] > 0.1
hudControl = CC.hudControl
hudControl.setSpeed = float(self.v_cruise_helper.v_cruise_cluster_kph * CV.KPH_TO_MS)
hudControl.speedVisible = self.enabled
hudControl.lanesVisible = self.enabled
hudControl.leadVisible = self.sm['longitudinalPlan'].hasLead
hudControl.rightLaneVisible = True
hudControl.leftLaneVisible = True
recent_blinker = (self.sm.frame - self.last_blinker_frame) * DT_CTRL < 5.0 # 5s blinker cooldown
ldw_allowed = self.is_ldw_enabled and CS.vEgo > LDW_MIN_SPEED and not recent_blinker \
and not CC.latActive and self.sm['liveCalibration'].calStatus == log.LiveCalibrationData.Status.calibrated
model_v2 = self.sm['modelV2']
desire_prediction = model_v2.meta.desirePrediction
if len(desire_prediction) and ldw_allowed:
right_lane_visible = model_v2.laneLineProbs[2] > 0.5
left_lane_visible = model_v2.laneLineProbs[1] > 0.5
l_lane_change_prob = desire_prediction[Desire.laneChangeLeft]
r_lane_change_prob = desire_prediction[Desire.laneChangeRight]
lane_lines = model_v2.laneLines
l_lane_close = left_lane_visible and (lane_lines[1].y[0] > -(1.08 + CAMERA_OFFSET))
r_lane_close = right_lane_visible and (lane_lines[2].y[0] < (1.08 - CAMERA_OFFSET))
hudControl.leftLaneDepart = bool(l_lane_change_prob > LANE_DEPARTURE_THRESHOLD and l_lane_close)
hudControl.rightLaneDepart = bool(r_lane_change_prob > LANE_DEPARTURE_THRESHOLD and r_lane_close)
if hudControl.rightLaneDepart or hudControl.leftLaneDepart:
self.events.add(EventName.ldw)
clear_event_types = set()
if ET.WARNING not in self.current_alert_types:
clear_event_types.add(ET.WARNING)
if self.enabled:
clear_event_types.add(ET.NO_ENTRY)
alerts = self.events.create_alerts(self.current_alert_types, [self.CP, CS, self.sm, self.is_metric, self.soft_disable_timer])
self.AM.add_many(self.sm.frame, alerts)
current_alert = self.AM.process_alerts(self.sm.frame, clear_event_types)
if current_alert:
hudControl.visualAlert = current_alert.visual_alert
if not self.read_only and self.initialized:
# send car controls over can
now_nanos = self.can_log_mono_time if REPLAY else int(sec_since_boot() * 1e9)
self.last_actuators, can_sends = self.CI.apply(CC, now_nanos)
self.pm.send('sendcan', can_list_to_can_capnp(can_sends, msgtype='sendcan', valid=CS.canValid))
CC.actuatorsOutput = self.last_actuators
if self.CP.steerControlType == car.CarParams.SteerControlType.angle:
self.steer_limited = abs(CC.actuators.steeringAngleDeg - CC.actuatorsOutput.steeringAngleDeg) > \
STEER_ANGLE_SATURATION_THRESHOLD
else:
self.steer_limited = abs(CC.actuators.steer - CC.actuatorsOutput.steer) > 1e-2
force_decel = (self.sm['driverMonitoringState'].awarenessStatus < 0.) or \
(self.state == State.softDisabling)
# Curvature & Steering angle
lp = self.sm['liveParameters']
steer_angle_without_offset = math.radians(CS.steeringAngleDeg - lp.angleOffsetDeg)
curvature = -self.VM.calc_curvature(steer_angle_without_offset, CS.vEgo, lp.roll)
# controlsState
dat = messaging.new_message('controlsState')
dat.valid = CS.canValid
controlsState = dat.controlsState
if current_alert:
controlsState.alertText1 = current_alert.alert_text_1
controlsState.alertText2 = current_alert.alert_text_2
controlsState.alertSize = current_alert.alert_size
controlsState.alertStatus = current_alert.alert_status
controlsState.alertBlinkingRate = current_alert.alert_rate
controlsState.alertType = current_alert.alert_type
controlsState.alertSound = current_alert.audible_alert
controlsState.longitudinalPlanMonoTime = self.sm.logMonoTime['longitudinalPlan']
controlsState.lateralPlanMonoTime = self.sm.logMonoTime['lateralPlan']
controlsState.enabled = self.enabled
controlsState.active = self.active
controlsState.curvature = curvature
controlsState.desiredCurvature = self.desired_curvature
controlsState.desiredCurvatureRate = self.desired_curvature_rate
controlsState.state = self.state
controlsState.engageable = not self.events.any(ET.NO_ENTRY)
controlsState.longControlState = self.LoC.long_control_state
controlsState.vPid = float(self.LoC.v_pid)
controlsState.vCruise = float(self.v_cruise_helper.v_cruise_kph)
controlsState.vCruiseCluster = float(self.v_cruise_helper.v_cruise_cluster_kph)
controlsState.upAccelCmd = float(self.LoC.pid.p)
controlsState.uiAccelCmd = float(self.LoC.pid.i)
controlsState.ufAccelCmd = float(self.LoC.pid.f)
controlsState.cumLagMs = -self.rk.remaining * 1000.
controlsState.startMonoTime = int(start_time * 1e9)
controlsState.forceDecel = bool(force_decel)
controlsState.canErrorCounter = self.can_rcv_cum_timeout_counter
controlsState.experimentalMode = self.experimental_mode
lat_tuning = self.CP.lateralTuning.which()
if self.joystick_mode:
controlsState.lateralControlState.debugState = lac_log
elif self.CP.steerControlType == car.CarParams.SteerControlType.angle:
controlsState.lateralControlState.angleState = lac_log
elif lat_tuning == 'pid':
controlsState.lateralControlState.pidState = lac_log
elif lat_tuning == 'torque':
controlsState.lateralControlState.torqueState = lac_log
elif lat_tuning == 'indi':
controlsState.lateralControlState.indiState = lac_log
self.pm.send('controlsState', dat)
# carState
car_events = self.events.to_msg()
cs_send = messaging.new_message('carState')
cs_send.valid = CS.canValid
cs_send.carState = CS
cs_send.carState.events = car_events
self.pm.send('carState', cs_send)
# carEvents - logged every second or on change
if (self.sm.frame % int(1. / DT_CTRL) == 0) or (self.events.names != self.events_prev):
ce_send = messaging.new_message('carEvents', len(self.events))
ce_send.carEvents = car_events
self.pm.send('carEvents', ce_send)
self.events_prev = self.events.names.copy()
# carParams - logged every 50 seconds (> 1 per segment)
if (self.sm.frame % int(50. / DT_CTRL) == 0):
cp_send = messaging.new_message('carParams')
cp_send.carParams = self.CP
self.pm.send('carParams', cp_send)
# carControl
cc_send = messaging.new_message('carControl')
cc_send.valid = CS.canValid
cc_send.carControl = CC
self.pm.send('carControl', cc_send)
# copy CarControl to pass to CarInterface on the next iteration
self.CC = CC
def step(self):
start_time = sec_since_boot()
self.prof.checkpoint("Ratekeeper", ignore=True)
self.is_metric = self.params.get_bool("IsMetric")
self.experimental_mode = self.params.get_bool("ExperimentalMode") and self.CP.openpilotLongitudinalControl
# Sample data from sockets and get a carState
CS = self.data_sample()
cloudlog.timestamp("Data sampled")
self.prof.checkpoint("Sample")
self.update_events(CS)
cloudlog.timestamp("Events updated")
if not self.read_only and self.initialized:
# Update control state
self.state_transition(CS)
self.prof.checkpoint("State transition")
# Compute actuators (runs PID loops and lateral MPC)
CC, lac_log = self.state_control(CS)
self.prof.checkpoint("State Control")
# Publish data
self.publish_logs(CS, start_time, CC, lac_log)
self.prof.checkpoint("Sent")
self.CS_prev = CS
def controlsd_thread(self):
while True:
self.step()
self.rk.monitor_time()
self.prof.display()
def main(sm=None, pm=None, logcan=None):
controls = Controls(sm, pm, logcan)
controls.controlsd_thread()
if __name__ == "__main__":
main()