openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

321 lines
14 KiB

#!/usr/bin/env python3
import os
import time
import pickle
import numpy as np
import cereal.messaging as messaging
from cereal import car, log
from pathlib import Path
from typing import Dict, Optional
from setproctitle import setproctitle
from cereal.messaging import PubMaster, SubMaster
from cereal.visionipc import VisionIpcClient, VisionStreamType, VisionBuf
from openpilot.common.swaglog import cloudlog
from openpilot.common.params import Params
from openpilot.common.filter_simple import FirstOrderFilter
from openpilot.common.realtime import config_realtime_process
from openpilot.common.transformations.model import get_warp_matrix
from openpilot.selfdrive import sentry
from openpilot.selfdrive.car.car_helpers import get_demo_car_params
from openpilot.selfdrive.controls.lib.desire_helper import DesireHelper
from openpilot.selfdrive.modeld.runners import ModelRunner, Runtime
from openpilot.selfdrive.modeld.parse_model_outputs import Parser
from openpilot.selfdrive.modeld.fill_model_msg import fill_model_msg, fill_pose_msg, PublishState
from openpilot.selfdrive.modeld.constants import ModelConstants
from openpilot.selfdrive.modeld.models.commonmodel_pyx import ModelFrame, CLContext
PROCESS_NAME = "selfdrive.modeld.modeld"
SEND_RAW_PRED = os.getenv('SEND_RAW_PRED')
MODEL_PATHS = {
ModelRunner.THNEED: Path(__file__).parent / 'models/supercombo.thneed',
ModelRunner.ONNX: Path(__file__).parent / 'models/supercombo.onnx'}
METADATA_PATH = Path(__file__).parent / 'models/supercombo_metadata.pkl'
class FrameMeta:
frame_id: int = 0
timestamp_sof: int = 0
timestamp_eof: int = 0
def __init__(self, vipc=None):
if vipc is not None:
self.frame_id, self.timestamp_sof, self.timestamp_eof = vipc.frame_id, vipc.timestamp_sof, vipc.timestamp_eof
class ModelState:
frame: ModelFrame
wide_frame: ModelFrame
inputs: Dict[str, np.ndarray]
output: np.ndarray
prev_desire: np.ndarray # for tracking the rising edge of the pulse
model: ModelRunner
def __init__(self, context: CLContext):
self.frame = ModelFrame(context)
self.wide_frame = ModelFrame(context)
self.prev_desire = np.zeros(ModelConstants.DESIRE_LEN, dtype=np.float32)
self.inputs = {
'desire': np.zeros(ModelConstants.DESIRE_LEN * (ModelConstants.HISTORY_BUFFER_LEN+1), dtype=np.float32),
'traffic_convention': np.zeros(ModelConstants.TRAFFIC_CONVENTION_LEN, dtype=np.float32),
'lateral_control_params': np.zeros(ModelConstants.LATERAL_CONTROL_PARAMS_LEN, dtype=np.float32),
'prev_desired_curv': np.zeros(ModelConstants.PREV_DESIRED_CURV_LEN * (ModelConstants.HISTORY_BUFFER_LEN+1), dtype=np.float32),
'nav_features': np.zeros(ModelConstants.NAV_FEATURE_LEN, dtype=np.float32),
'nav_instructions': np.zeros(ModelConstants.NAV_INSTRUCTION_LEN, dtype=np.float32),
'features_buffer': np.zeros(ModelConstants.HISTORY_BUFFER_LEN * ModelConstants.FEATURE_LEN, dtype=np.float32),
}
with open(METADATA_PATH, 'rb') as f:
model_metadata = pickle.load(f)
self.output_slices = model_metadata['output_slices']
net_output_size = model_metadata['output_shapes']['outputs'][1]
self.output = np.zeros(net_output_size, dtype=np.float32)
self.parser = Parser()
self.model = ModelRunner(MODEL_PATHS, self.output, Runtime.GPU, False, context)
self.model.addInput("input_imgs", None)
self.model.addInput("big_input_imgs", None)
for k,v in self.inputs.items():
self.model.addInput(k, v)
def slice_outputs(self, model_outputs: np.ndarray) -> Dict[str, np.ndarray]:
parsed_model_outputs = {k: model_outputs[np.newaxis, v] for k,v in self.output_slices.items()}
if SEND_RAW_PRED:
parsed_model_outputs['raw_pred'] = model_outputs.copy()
return parsed_model_outputs
def run(self, buf: VisionBuf, wbuf: VisionBuf, transform: np.ndarray, transform_wide: np.ndarray,
inputs: Dict[str, np.ndarray], prepare_only: bool) -> Optional[Dict[str, np.ndarray]]:
# Model decides when action is completed, so desire input is just a pulse triggered on rising edge
inputs['desire'][0] = 0
self.inputs['desire'][:-ModelConstants.DESIRE_LEN] = self.inputs['desire'][ModelConstants.DESIRE_LEN:]
self.inputs['desire'][-ModelConstants.DESIRE_LEN:] = np.where(inputs['desire'] - self.prev_desire > .99, inputs['desire'], 0)
self.prev_desire[:] = inputs['desire']
self.inputs['traffic_convention'][:] = inputs['traffic_convention']
self.inputs['lateral_control_params'][:] = inputs['lateral_control_params']
self.inputs['nav_features'][:] = inputs['nav_features']
self.inputs['nav_instructions'][:] = inputs['nav_instructions']
# if getCLBuffer is not None, frame will be None
self.model.setInputBuffer("input_imgs", self.frame.prepare(buf, transform.flatten(), self.model.getCLBuffer("input_imgs")))
if wbuf is not None:
self.model.setInputBuffer("big_input_imgs", self.wide_frame.prepare(wbuf, transform_wide.flatten(), self.model.getCLBuffer("big_input_imgs")))
if prepare_only:
return None
self.model.execute()
outputs = self.parser.parse_outputs(self.slice_outputs(self.output))
self.inputs['features_buffer'][:-ModelConstants.FEATURE_LEN] = self.inputs['features_buffer'][ModelConstants.FEATURE_LEN:]
self.inputs['features_buffer'][-ModelConstants.FEATURE_LEN:] = outputs['hidden_state'][0, :]
self.inputs['prev_desired_curv'][:-ModelConstants.PREV_DESIRED_CURV_LEN] = self.inputs['prev_desired_curv'][ModelConstants.PREV_DESIRED_CURV_LEN:]
self.inputs['prev_desired_curv'][-ModelConstants.PREV_DESIRED_CURV_LEN:] = outputs['desired_curvature'][0, :]
return outputs
def main(demo=False):
sentry.set_tag("daemon", PROCESS_NAME)
cloudlog.bind(daemon=PROCESS_NAME)
setproctitle(PROCESS_NAME)
config_realtime_process(7, 54)
cloudlog.warning("setting up CL context")
cl_context = CLContext()
cloudlog.warning("CL context ready; loading model")
model = ModelState(cl_context)
cloudlog.warning("models loaded, modeld starting")
# visionipc clients
while True:
available_streams = VisionIpcClient.available_streams("camerad", block=False)
if available_streams:
use_extra_client = VisionStreamType.VISION_STREAM_WIDE_ROAD in available_streams and VisionStreamType.VISION_STREAM_ROAD in available_streams
main_wide_camera = VisionStreamType.VISION_STREAM_ROAD not in available_streams
break
time.sleep(.1)
vipc_client_main_stream = VisionStreamType.VISION_STREAM_WIDE_ROAD if main_wide_camera else VisionStreamType.VISION_STREAM_ROAD
vipc_client_main = VisionIpcClient("camerad", vipc_client_main_stream, True, cl_context)
vipc_client_extra = VisionIpcClient("camerad", VisionStreamType.VISION_STREAM_WIDE_ROAD, False, cl_context)
cloudlog.warning(f"vision stream set up, main_wide_camera: {main_wide_camera}, use_extra_client: {use_extra_client}")
while not vipc_client_main.connect(False):
time.sleep(0.1)
while use_extra_client and not vipc_client_extra.connect(False):
time.sleep(0.1)
cloudlog.warning(f"connected main cam with buffer size: {vipc_client_main.buffer_len} ({vipc_client_main.width} x {vipc_client_main.height})")
if use_extra_client:
cloudlog.warning(f"connected extra cam with buffer size: {vipc_client_extra.buffer_len} ({vipc_client_extra.width} x {vipc_client_extra.height})")
# messaging
pm = PubMaster(["modelV2", "cameraOdometry"])
sm = SubMaster(["carState", "roadCameraState", "liveCalibration", "driverMonitoringState", "navModel", "navInstruction", "carControl"])
publish_state = PublishState()
params = Params()
# setup filter to track dropped frames
frame_dropped_filter = FirstOrderFilter(0., 10., 1. / ModelConstants.MODEL_FREQ)
frame_id = 0
last_vipc_frame_id = 0
run_count = 0
model_transform_main = np.zeros((3, 3), dtype=np.float32)
model_transform_extra = np.zeros((3, 3), dtype=np.float32)
live_calib_seen = False
nav_features = np.zeros(ModelConstants.NAV_FEATURE_LEN, dtype=np.float32)
nav_instructions = np.zeros(ModelConstants.NAV_INSTRUCTION_LEN, dtype=np.float32)
buf_main, buf_extra = None, None
meta_main = FrameMeta()
meta_extra = FrameMeta()
if demo:
CP = get_demo_car_params()
else:
with car.CarParams.from_bytes(params.get("CarParams", block=True)) as msg:
CP = msg
cloudlog.info("modeld got CarParams: %s", CP.carName)
# TODO this needs more thought, use .2s extra for now to estimate other delays
steer_delay = CP.steerActuatorDelay + .2
DH = DesireHelper()
while True:
# Keep receiving frames until we are at least 1 frame ahead of previous extra frame
while meta_main.timestamp_sof < meta_extra.timestamp_sof + 25000000:
buf_main = vipc_client_main.recv()
meta_main = FrameMeta(vipc_client_main)
if buf_main is None:
break
if buf_main is None:
cloudlog.error("vipc_client_main no frame")
continue
if use_extra_client:
# Keep receiving extra frames until frame id matches main camera
while True:
buf_extra = vipc_client_extra.recv()
meta_extra = FrameMeta(vipc_client_extra)
if buf_extra is None or meta_main.timestamp_sof < meta_extra.timestamp_sof + 25000000:
break
if buf_extra is None:
cloudlog.error("vipc_client_extra no frame")
continue
if abs(meta_main.timestamp_sof - meta_extra.timestamp_sof) > 10000000:
cloudlog.error("frames out of sync! main: {} ({:.5f}), extra: {} ({:.5f})".format(
meta_main.frame_id, meta_main.timestamp_sof / 1e9,
meta_extra.frame_id, meta_extra.timestamp_sof / 1e9))
else:
# Use single camera
buf_extra = buf_main
meta_extra = meta_main
sm.update(0)
desire = DH.desire
is_rhd = sm["driverMonitoringState"].isRHD
frame_id = sm["roadCameraState"].frameId
lateral_control_params = np.array([sm["carState"].vEgo, steer_delay], dtype=np.float32)
if sm.updated["liveCalibration"]:
device_from_calib_euler = np.array(sm["liveCalibration"].rpyCalib, dtype=np.float32)
model_transform_main = get_warp_matrix(device_from_calib_euler, main_wide_camera, False).astype(np.float32)
model_transform_extra = get_warp_matrix(device_from_calib_euler, True, True).astype(np.float32)
live_calib_seen = True
traffic_convention = np.zeros(2)
traffic_convention[int(is_rhd)] = 1
vec_desire = np.zeros(ModelConstants.DESIRE_LEN, dtype=np.float32)
if desire >= 0 and desire < ModelConstants.DESIRE_LEN:
vec_desire[desire] = 1
# Enable/disable nav features
timestamp_llk = sm["navModel"].locationMonoTime
nav_valid = sm.valid["navModel"] # and (nanos_since_boot() - timestamp_llk < 1e9)
nav_enabled = nav_valid and params.get_bool("ExperimentalMode")
if not nav_enabled:
nav_features[:] = 0
nav_instructions[:] = 0
if nav_enabled and sm.updated["navModel"]:
nav_features = np.array(sm["navModel"].features)
if nav_enabled and sm.updated["navInstruction"]:
nav_instructions[:] = 0
for maneuver in sm["navInstruction"].allManeuvers:
distance_idx = 25 + int(maneuver.distance / 20)
direction_idx = 0
if maneuver.modifier in ("left", "slight left", "sharp left"):
direction_idx = 1
if maneuver.modifier in ("right", "slight right", "sharp right"):
direction_idx = 2
if 0 <= distance_idx < 50:
nav_instructions[distance_idx*3 + direction_idx] = 1
# tracked dropped frames
vipc_dropped_frames = max(0, meta_main.frame_id - last_vipc_frame_id - 1)
frames_dropped = frame_dropped_filter.update(min(vipc_dropped_frames, 10))
if run_count < 10: # let frame drops warm up
frame_dropped_filter.x = 0.
frames_dropped = 0.
run_count = run_count + 1
frame_drop_ratio = frames_dropped / (1 + frames_dropped)
prepare_only = vipc_dropped_frames > 0
if prepare_only:
cloudlog.error(f"skipping model eval. Dropped {vipc_dropped_frames} frames")
inputs:Dict[str, np.ndarray] = {
'desire': vec_desire,
'traffic_convention': traffic_convention,
'lateral_control_params': lateral_control_params,
'nav_features': nav_features,
'nav_instructions': nav_instructions}
mt1 = time.perf_counter()
model_output = model.run(buf_main, buf_extra, model_transform_main, model_transform_extra, inputs, prepare_only)
mt2 = time.perf_counter()
model_execution_time = mt2 - mt1
if model_output is not None:
modelv2_send = messaging.new_message('modelV2')
posenet_send = messaging.new_message('cameraOdometry')
fill_model_msg(modelv2_send, model_output, publish_state, meta_main.frame_id, meta_extra.frame_id, frame_id, frame_drop_ratio,
meta_main.timestamp_eof, timestamp_llk, model_execution_time, nav_enabled, live_calib_seen)
desire_state = modelv2_send.modelV2.meta.desireState
l_lane_change_prob = desire_state[log.Desire.laneChangeLeft]
r_lane_change_prob = desire_state[log.Desire.laneChangeRight]
lane_change_prob = l_lane_change_prob + r_lane_change_prob
DH.update(sm['carState'], sm['carControl'].latActive, lane_change_prob)
modelv2_send.modelV2.meta.laneChangeState = DH.lane_change_state
modelv2_send.modelV2.meta.laneChangeDirection = DH.lane_change_direction
fill_pose_msg(posenet_send, model_output, meta_main.frame_id, vipc_dropped_frames, meta_main.timestamp_eof, live_calib_seen)
pm.send('modelV2', modelv2_send)
pm.send('cameraOdometry', posenet_send)
last_vipc_frame_id = meta_main.frame_id
if __name__ == "__main__":
try:
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--demo', action='store_true', help='A boolean for demo mode.')
args = parser.parse_args()
main(demo=args.demo)
except KeyboardInterrupt:
cloudlog.warning(f"child {PROCESS_NAME} got SIGINT")
except Exception:
sentry.capture_exception()
raise