You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							105 lines
						
					
					
						
							3.6 KiB
						
					
					
				
			
		
		
	
	
							105 lines
						
					
					
						
							3.6 KiB
						
					
					
				#!/usr/bin/env python3
 | 
						|
import numpy as np
 | 
						|
 | 
						|
from cereal import messaging
 | 
						|
from common.filter_simple import FirstOrderFilter
 | 
						|
from common.realtime import Ratekeeper
 | 
						|
from system.swaglog import cloudlog
 | 
						|
 | 
						|
RATE = 10
 | 
						|
FFT_SAMPLES = 4096
 | 
						|
REFERENCE_SPL = 2e-5  # newtons/m^2
 | 
						|
SAMPLE_RATE = 44100
 | 
						|
FILTER_DT = 1. / (SAMPLE_RATE / FFT_SAMPLES)
 | 
						|
 | 
						|
 | 
						|
def calculate_spl(measurements):
 | 
						|
  # https://www.engineeringtoolbox.com/sound-pressure-d_711.html
 | 
						|
  sound_pressure = np.sqrt(np.mean(measurements ** 2))  # RMS of amplitudes
 | 
						|
  if sound_pressure > 0:
 | 
						|
    sound_pressure_level = 20 * np.log10(sound_pressure / REFERENCE_SPL)  # dB
 | 
						|
  else:
 | 
						|
    sound_pressure_level = 0
 | 
						|
  return sound_pressure, sound_pressure_level
 | 
						|
 | 
						|
 | 
						|
def apply_a_weighting(measurements: np.ndarray) -> np.ndarray:
 | 
						|
  # Generate a Hanning window of the same length as the audio measurements
 | 
						|
  measurements_windowed = measurements * np.hanning(len(measurements))
 | 
						|
 | 
						|
  # Calculate the frequency axis for the signal
 | 
						|
  freqs = np.fft.fftfreq(measurements_windowed.size, d=1 / SAMPLE_RATE)
 | 
						|
 | 
						|
  # Calculate the A-weighting filter
 | 
						|
  # https://en.wikipedia.org/wiki/A-weighting
 | 
						|
  A = 12194 ** 2 * freqs ** 4 / ((freqs ** 2 + 20.6 ** 2) * (freqs ** 2 + 12194 ** 2) * np.sqrt((freqs ** 2 + 107.7 ** 2) * (freqs ** 2 + 737.9 ** 2)))
 | 
						|
  A /= np.max(A)  # Normalize the filter
 | 
						|
 | 
						|
  # Apply the A-weighting filter to the signal
 | 
						|
  return np.abs(np.fft.ifft(np.fft.fft(measurements_windowed) * A))
 | 
						|
 | 
						|
 | 
						|
class Mic:
 | 
						|
  def __init__(self, pm):
 | 
						|
    self.pm = pm
 | 
						|
    self.rk = Ratekeeper(RATE)
 | 
						|
 | 
						|
    self.measurements = np.empty(0)
 | 
						|
 | 
						|
    self.sound_pressure = 0
 | 
						|
    self.sound_pressure_weighted = 0
 | 
						|
    self.sound_pressure_level_weighted = 0
 | 
						|
 | 
						|
    self.spl_filter_weighted = FirstOrderFilter(0, 2.5, FILTER_DT, initialized=False)
 | 
						|
 | 
						|
  def update(self):
 | 
						|
    msg = messaging.new_message('microphone')
 | 
						|
    msg.microphone.soundPressure = float(self.sound_pressure)
 | 
						|
    msg.microphone.soundPressureWeighted = float(self.sound_pressure_weighted)
 | 
						|
 | 
						|
    msg.microphone.soundPressureWeightedDb = float(self.sound_pressure_level_weighted)
 | 
						|
    msg.microphone.filteredSoundPressureWeightedDb = float(self.spl_filter_weighted.x)
 | 
						|
 | 
						|
    self.pm.send('microphone', msg)
 | 
						|
    self.rk.keep_time()
 | 
						|
 | 
						|
  def callback(self, indata, frames, time, status):
 | 
						|
    """
 | 
						|
    Using amplitude measurements, calculate an uncalibrated sound pressure and sound pressure level.
 | 
						|
    Then apply A-weighting to the raw amplitudes and run the same calculations again.
 | 
						|
 | 
						|
    Logged A-weighted equivalents are rough approximations of the human-perceived loudness.
 | 
						|
    """
 | 
						|
 | 
						|
    self.measurements = np.concatenate((self.measurements, indata[:, 0]))
 | 
						|
 | 
						|
    while self.measurements.size >= FFT_SAMPLES:
 | 
						|
      measurements = self.measurements[:FFT_SAMPLES]
 | 
						|
 | 
						|
      self.sound_pressure, _ = calculate_spl(measurements)
 | 
						|
      measurements_weighted = apply_a_weighting(measurements)
 | 
						|
      self.sound_pressure_weighted, self.sound_pressure_level_weighted = calculate_spl(measurements_weighted)
 | 
						|
      self.spl_filter_weighted.update(self.sound_pressure_level_weighted)
 | 
						|
 | 
						|
      self.measurements = self.measurements[FFT_SAMPLES:]
 | 
						|
 | 
						|
  def micd_thread(self):
 | 
						|
    # sounddevice must be imported after forking processes
 | 
						|
    import sounddevice as sd  # pylint: disable=import-outside-toplevel
 | 
						|
 | 
						|
    with sd.InputStream(channels=1, samplerate=SAMPLE_RATE, callback=self.callback) as stream:
 | 
						|
      cloudlog.info(f"micd stream started: {stream.samplerate=} {stream.channels=} {stream.dtype=} {stream.device=}")
 | 
						|
      while True:
 | 
						|
        self.update()
 | 
						|
 | 
						|
 | 
						|
def main(pm=None):
 | 
						|
  if pm is None:
 | 
						|
    pm = messaging.PubMaster(['microphone'])
 | 
						|
 | 
						|
  mic = Mic(pm)
 | 
						|
  mic.micd_thread()
 | 
						|
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
  main()
 | 
						|
 |