openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

459 lines
16 KiB

#!/usr/bin/env python3
import os
import numpy as np
from cereal import log
from common.realtime import sec_since_boot
from common.numpy_fast import clip
from system.swaglog import cloudlog
# WARNING: imports outside of constants will not trigger a rebuild
from selfdrive.modeld.constants import index_function
from selfdrive.car.interfaces import ACCEL_MIN
from selfdrive.controls.radard import _LEAD_ACCEL_TAU
if __name__ == '__main__': # generating code
from third_party.acados.acados_template import AcadosModel, AcadosOcp, AcadosOcpSolver
else:
from selfdrive.controls.lib.longitudinal_mpc_lib.c_generated_code.acados_ocp_solver_pyx import AcadosOcpSolverCython
from casadi import SX, vertcat
MODEL_NAME = 'long'
LONG_MPC_DIR = os.path.dirname(os.path.abspath(__file__))
EXPORT_DIR = os.path.join(LONG_MPC_DIR, "c_generated_code")
JSON_FILE = os.path.join(LONG_MPC_DIR, "acados_ocp_long.json")
SOURCES = ['lead0', 'lead1', 'cruise', 'e2e']
X_DIM = 3
U_DIM = 1
PARAM_DIM = 6
COST_E_DIM = 5
COST_DIM = COST_E_DIM + 1
CONSTR_DIM = 4
X_EGO_OBSTACLE_COST = 3.
X_EGO_COST = 0.
V_EGO_COST = 0.
A_EGO_COST = 0.
J_EGO_COST = 5.0
A_CHANGE_COST = 200.
DANGER_ZONE_COST = 100.
CRASH_DISTANCE = .25
LEAD_DANGER_FACTOR = 0.75
LIMIT_COST = 1e6
ACADOS_SOLVER_TYPE = 'SQP_RTI'
# Fewer timestamps don't hurt performance and lead to
# much better convergence of the MPC with low iterations
N = 12
MAX_T = 10.0
T_IDXS_LST = [index_function(idx, max_val=MAX_T, max_idx=N) for idx in range(N+1)]
T_IDXS = np.array(T_IDXS_LST)
FCW_IDXS = T_IDXS < 5.0
T_DIFFS = np.diff(T_IDXS, prepend=[0.])
COMFORT_BRAKE = 2.5
STOP_DISTANCE = 6.0
def get_jerk_factor(personality=log.LongitudinalPersonality.standard):
if personality==log.LongitudinalPersonality.relaxed:
return 1.0
elif personality==log.LongitudinalPersonality.standard:
return 1.0
elif personality==log.LongitudinalPersonality.aggressive:
return 0.5
else:
raise NotImplementedError("Longitudinal personality not supported")
def get_T_FOLLOW(personality=log.LongitudinalPersonality.standard):
if personality==log.LongitudinalPersonality.relaxed:
return 1.75
elif personality==log.LongitudinalPersonality.standard:
return 1.45
elif personality==log.LongitudinalPersonality.aggressive:
return 1.25
else:
raise NotImplementedError("Longitudinal personality not supported")
def get_stopped_equivalence_factor(v_lead):
return (v_lead**2) / (2 * COMFORT_BRAKE)
def get_safe_obstacle_distance(v_ego, t_follow):
return (v_ego**2) / (2 * COMFORT_BRAKE) + t_follow * v_ego + STOP_DISTANCE
def desired_follow_distance(v_ego, v_lead, t_follow=None):
if t_follow is None:
t_follow = get_T_FOLLOW()
return get_safe_obstacle_distance(v_ego, t_follow) - get_stopped_equivalence_factor(v_lead)
def gen_long_model():
model = AcadosModel()
model.name = MODEL_NAME
# set up states & controls
x_ego = SX.sym('x_ego')
v_ego = SX.sym('v_ego')
a_ego = SX.sym('a_ego')
model.x = vertcat(x_ego, v_ego, a_ego)
# controls
j_ego = SX.sym('j_ego')
model.u = vertcat(j_ego)
# xdot
x_ego_dot = SX.sym('x_ego_dot')
v_ego_dot = SX.sym('v_ego_dot')
a_ego_dot = SX.sym('a_ego_dot')
model.xdot = vertcat(x_ego_dot, v_ego_dot, a_ego_dot)
# live parameters
a_min = SX.sym('a_min')
a_max = SX.sym('a_max')
x_obstacle = SX.sym('x_obstacle')
prev_a = SX.sym('prev_a')
lead_t_follow = SX.sym('lead_t_follow')
lead_danger_factor = SX.sym('lead_danger_factor')
model.p = vertcat(a_min, a_max, x_obstacle, prev_a, lead_t_follow, lead_danger_factor)
# dynamics model
f_expl = vertcat(v_ego, a_ego, j_ego)
model.f_impl_expr = model.xdot - f_expl
model.f_expl_expr = f_expl
return model
def gen_long_ocp():
ocp = AcadosOcp()
ocp.model = gen_long_model()
Tf = T_IDXS[-1]
# set dimensions
ocp.dims.N = N
# set cost module
ocp.cost.cost_type = 'NONLINEAR_LS'
ocp.cost.cost_type_e = 'NONLINEAR_LS'
QR = np.zeros((COST_DIM, COST_DIM))
Q = np.zeros((COST_E_DIM, COST_E_DIM))
ocp.cost.W = QR
ocp.cost.W_e = Q
x_ego, v_ego, a_ego = ocp.model.x[0], ocp.model.x[1], ocp.model.x[2]
j_ego = ocp.model.u[0]
a_min, a_max = ocp.model.p[0], ocp.model.p[1]
x_obstacle = ocp.model.p[2]
prev_a = ocp.model.p[3]
lead_t_follow = ocp.model.p[4]
lead_danger_factor = ocp.model.p[5]
ocp.cost.yref = np.zeros((COST_DIM, ))
ocp.cost.yref_e = np.zeros((COST_E_DIM, ))
desired_dist_comfort = get_safe_obstacle_distance(v_ego, lead_t_follow)
# The main cost in normal operation is how close you are to the "desired" distance
# from an obstacle at every timestep. This obstacle can be a lead car
# or other object. In e2e mode we can use x_position targets as a cost
# instead.
costs = [((x_obstacle - x_ego) - (desired_dist_comfort)) / (v_ego + 10.),
x_ego,
v_ego,
a_ego,
a_ego - prev_a,
j_ego]
ocp.model.cost_y_expr = vertcat(*costs)
ocp.model.cost_y_expr_e = vertcat(*costs[:-1])
# Constraints on speed, acceleration and desired distance to
# the obstacle, which is treated as a slack constraint so it
# behaves like an asymmetrical cost.
constraints = vertcat(v_ego,
(a_ego - a_min),
(a_max - a_ego),
((x_obstacle - x_ego) - lead_danger_factor * (desired_dist_comfort)) / (v_ego + 10.))
ocp.model.con_h_expr = constraints
x0 = np.zeros(X_DIM)
ocp.constraints.x0 = x0
ocp.parameter_values = np.array([-1.2, 1.2, 0.0, 0.0, get_T_FOLLOW(), LEAD_DANGER_FACTOR])
# We put all constraint cost weights to 0 and only set them at runtime
cost_weights = np.zeros(CONSTR_DIM)
ocp.cost.zl = cost_weights
ocp.cost.Zl = cost_weights
ocp.cost.Zu = cost_weights
ocp.cost.zu = cost_weights
ocp.constraints.lh = np.zeros(CONSTR_DIM)
ocp.constraints.uh = 1e4*np.ones(CONSTR_DIM)
ocp.constraints.idxsh = np.arange(CONSTR_DIM)
# The HPIPM solver can give decent solutions even when it is stopped early
# Which is critical for our purpose where compute time is strictly bounded
# We use HPIPM in the SPEED_ABS mode, which ensures fastest runtime. This
# does not cause issues since the problem is well bounded.
ocp.solver_options.qp_solver = 'PARTIAL_CONDENSING_HPIPM'
ocp.solver_options.hessian_approx = 'GAUSS_NEWTON'
ocp.solver_options.integrator_type = 'ERK'
ocp.solver_options.nlp_solver_type = ACADOS_SOLVER_TYPE
ocp.solver_options.qp_solver_cond_N = 1
# More iterations take too much time and less lead to inaccurate convergence in
# some situations. Ideally we would run just 1 iteration to ensure fixed runtime.
ocp.solver_options.qp_solver_iter_max = 10
ocp.solver_options.qp_tol = 1e-3
# set prediction horizon
ocp.solver_options.tf = Tf
ocp.solver_options.shooting_nodes = T_IDXS
ocp.code_export_directory = EXPORT_DIR
return ocp
class LongitudinalMpc:
def __init__(self, mode='acc'):
self.mode = mode
self.solver = AcadosOcpSolverCython(MODEL_NAME, ACADOS_SOLVER_TYPE, N)
self.reset()
self.source = SOURCES[2]
def reset(self):
# self.solver = AcadosOcpSolverCython(MODEL_NAME, ACADOS_SOLVER_TYPE, N)
self.solver.reset()
# self.solver.options_set('print_level', 2)
self.v_solution = np.zeros(N+1)
self.a_solution = np.zeros(N+1)
self.prev_a = np.array(self.a_solution)
self.j_solution = np.zeros(N)
self.yref = np.zeros((N+1, COST_DIM))
for i in range(N):
self.solver.cost_set(i, "yref", self.yref[i])
self.solver.cost_set(N, "yref", self.yref[N][:COST_E_DIM])
self.x_sol = np.zeros((N+1, X_DIM))
self.u_sol = np.zeros((N,1))
self.params = np.zeros((N+1, PARAM_DIM))
for i in range(N+1):
self.solver.set(i, 'x', np.zeros(X_DIM))
self.last_cloudlog_t = 0
self.status = False
self.crash_cnt = 0.0
self.solution_status = 0
# timers
self.solve_time = 0.0
self.time_qp_solution = 0.0
self.time_linearization = 0.0
self.time_integrator = 0.0
self.x0 = np.zeros(X_DIM)
self.set_weights()
def set_cost_weights(self, cost_weights, constraint_cost_weights):
W = np.asfortranarray(np.diag(cost_weights))
for i in range(N):
# TODO don't hardcode A_CHANGE_COST idx
# reduce the cost on (a-a_prev) later in the horizon.
W[4,4] = cost_weights[4] * np.interp(T_IDXS[i], [0.0, 1.0, 2.0], [1.0, 1.0, 0.0])
self.solver.cost_set(i, 'W', W)
# Setting the slice without the copy make the array not contiguous,
# causing issues with the C interface.
self.solver.cost_set(N, 'W', np.copy(W[:COST_E_DIM, :COST_E_DIM]))
# Set L2 slack cost on lower bound constraints
Zl = np.array(constraint_cost_weights)
for i in range(N):
self.solver.cost_set(i, 'Zl', Zl)
def set_weights(self, prev_accel_constraint=True, personality=log.LongitudinalPersonality.standard):
jerk_factor = get_jerk_factor(personality)
if self.mode == 'acc':
a_change_cost = A_CHANGE_COST if prev_accel_constraint else 0
cost_weights = [X_EGO_OBSTACLE_COST, X_EGO_COST, V_EGO_COST, A_EGO_COST, jerk_factor * a_change_cost, jerk_factor * J_EGO_COST]
constraint_cost_weights = [LIMIT_COST, LIMIT_COST, LIMIT_COST, DANGER_ZONE_COST]
elif self.mode == 'blended':
a_change_cost = 40.0 if prev_accel_constraint else 0
cost_weights = [0., 0.1, 0.2, 5.0, a_change_cost, 1.0]
constraint_cost_weights = [LIMIT_COST, LIMIT_COST, LIMIT_COST, 50.0]
else:
raise NotImplementedError(f'Planner mode {self.mode} not recognized in planner cost set')
self.set_cost_weights(cost_weights, constraint_cost_weights)
def set_cur_state(self, v, a):
v_prev = self.x0[1]
self.x0[1] = v
self.x0[2] = a
if abs(v_prev - v) > 2.: # probably only helps if v < v_prev
for i in range(0, N+1):
self.solver.set(i, 'x', self.x0)
@staticmethod
def extrapolate_lead(x_lead, v_lead, a_lead, a_lead_tau):
a_lead_traj = a_lead * np.exp(-a_lead_tau * (T_IDXS**2)/2.)
v_lead_traj = np.clip(v_lead + np.cumsum(T_DIFFS * a_lead_traj), 0.0, 1e8)
x_lead_traj = x_lead + np.cumsum(T_DIFFS * v_lead_traj)
lead_xv = np.column_stack((x_lead_traj, v_lead_traj))
return lead_xv
def process_lead(self, lead):
v_ego = self.x0[1]
if lead is not None and lead.status:
x_lead = lead.dRel
v_lead = lead.vLead
a_lead = lead.aLeadK
a_lead_tau = lead.aLeadTau
else:
# Fake a fast lead car, so mpc can keep running in the same mode
x_lead = 50.0
v_lead = v_ego + 10.0
a_lead = 0.0
a_lead_tau = _LEAD_ACCEL_TAU
# MPC will not converge if immediate crash is expected
# Clip lead distance to what is still possible to brake for
min_x_lead = ((v_ego + v_lead)/2) * (v_ego - v_lead) / (-ACCEL_MIN * 2)
x_lead = clip(x_lead, min_x_lead, 1e8)
v_lead = clip(v_lead, 0.0, 1e8)
a_lead = clip(a_lead, -10., 5.)
lead_xv = self.extrapolate_lead(x_lead, v_lead, a_lead, a_lead_tau)
return lead_xv
def set_accel_limits(self, min_a, max_a):
# TODO this sets a max accel limit, but the minimum limit is only for cruise decel
# needs refactor
self.cruise_min_a = min_a
self.max_a = max_a
def update(self, radarstate, v_cruise, x, v, a, j, personality=log.LongitudinalPersonality.standard):
t_follow = get_T_FOLLOW(personality)
v_ego = self.x0[1]
self.status = radarstate.leadOne.status or radarstate.leadTwo.status
lead_xv_0 = self.process_lead(radarstate.leadOne)
lead_xv_1 = self.process_lead(radarstate.leadTwo)
# To estimate a safe distance from a moving lead, we calculate how much stopping
# distance that lead needs as a minimum. We can add that to the current distance
# and then treat that as a stopped car/obstacle at this new distance.
lead_0_obstacle = lead_xv_0[:,0] + get_stopped_equivalence_factor(lead_xv_0[:,1])
lead_1_obstacle = lead_xv_1[:,0] + get_stopped_equivalence_factor(lead_xv_1[:,1])
self.params[:,0] = ACCEL_MIN
self.params[:,1] = self.max_a
# Update in ACC mode or ACC/e2e blend
if self.mode == 'acc':
self.params[:,5] = LEAD_DANGER_FACTOR
# Fake an obstacle for cruise, this ensures smooth acceleration to set speed
# when the leads are no factor.
v_lower = v_ego + (T_IDXS * self.cruise_min_a * 1.05)
v_upper = v_ego + (T_IDXS * self.max_a * 1.05)
v_cruise_clipped = np.clip(v_cruise * np.ones(N+1),
v_lower,
v_upper)
cruise_obstacle = np.cumsum(T_DIFFS * v_cruise_clipped) + get_safe_obstacle_distance(v_cruise_clipped, t_follow)
x_obstacles = np.column_stack([lead_0_obstacle, lead_1_obstacle, cruise_obstacle])
self.source = SOURCES[np.argmin(x_obstacles[0])]
# These are not used in ACC mode
x[:], v[:], a[:], j[:] = 0.0, 0.0, 0.0, 0.0
elif self.mode == 'blended':
self.params[:,5] = 1.0
x_obstacles = np.column_stack([lead_0_obstacle,
lead_1_obstacle])
cruise_target = T_IDXS * np.clip(v_cruise, v_ego - 2.0, 1e3) + x[0]
xforward = ((v[1:] + v[:-1]) / 2) * (T_IDXS[1:] - T_IDXS[:-1])
x = np.cumsum(np.insert(xforward, 0, x[0]))
x_and_cruise = np.column_stack([x, cruise_target])
x = np.min(x_and_cruise, axis=1)
self.source = 'e2e' if x_and_cruise[1,0] < x_and_cruise[1,1] else 'cruise'
else:
raise NotImplementedError(f'Planner mode {self.mode} not recognized in planner update')
self.yref[:,1] = x
self.yref[:,2] = v
self.yref[:,3] = a
self.yref[:,5] = j
for i in range(N):
self.solver.set(i, "yref", self.yref[i])
self.solver.set(N, "yref", self.yref[N][:COST_E_DIM])
self.params[:,2] = np.min(x_obstacles, axis=1)
self.params[:,3] = np.copy(self.prev_a)
self.params[:,4] = t_follow
self.run()
if (np.any(lead_xv_0[FCW_IDXS,0] - self.x_sol[FCW_IDXS,0] < CRASH_DISTANCE) and
radarstate.leadOne.modelProb > 0.9):
self.crash_cnt += 1
else:
self.crash_cnt = 0
# Check if it got within lead comfort range
# TODO This should be done cleaner
if self.mode == 'blended':
if any((lead_0_obstacle - get_safe_obstacle_distance(self.x_sol[:,1], t_follow))- self.x_sol[:,0] < 0.0):
self.source = 'lead0'
if any((lead_1_obstacle - get_safe_obstacle_distance(self.x_sol[:,1], t_follow))- self.x_sol[:,0] < 0.0) and \
(lead_1_obstacle[0] - lead_0_obstacle[0]):
self.source = 'lead1'
def run(self):
# t0 = sec_since_boot()
# reset = 0
for i in range(N+1):
self.solver.set(i, 'p', self.params[i])
self.solver.constraints_set(0, "lbx", self.x0)
self.solver.constraints_set(0, "ubx", self.x0)
self.solution_status = self.solver.solve()
self.solve_time = float(self.solver.get_stats('time_tot')[0])
self.time_qp_solution = float(self.solver.get_stats('time_qp')[0])
self.time_linearization = float(self.solver.get_stats('time_lin')[0])
self.time_integrator = float(self.solver.get_stats('time_sim')[0])
# qp_iter = self.solver.get_stats('statistics')[-1][-1] # SQP_RTI specific
# print(f"long_mpc timings: tot {self.solve_time:.2e}, qp {self.time_qp_solution:.2e}, lin {self.time_linearization:.2e}, \
# integrator {self.time_integrator:.2e}, qp_iter {qp_iter}")
# res = self.solver.get_residuals()
# print(f"long_mpc residuals: {res[0]:.2e}, {res[1]:.2e}, {res[2]:.2e}, {res[3]:.2e}")
# self.solver.print_statistics()
for i in range(N+1):
self.x_sol[i] = self.solver.get(i, 'x')
for i in range(N):
self.u_sol[i] = self.solver.get(i, 'u')
self.v_solution = self.x_sol[:,1]
self.a_solution = self.x_sol[:,2]
self.j_solution = self.u_sol[:,0]
self.prev_a = np.interp(T_IDXS + 0.05, T_IDXS, self.a_solution)
t = sec_since_boot()
if self.solution_status != 0:
if t > self.last_cloudlog_t + 5.0:
self.last_cloudlog_t = t
cloudlog.warning(f"Long mpc reset, solution_status: {self.solution_status}")
self.reset()
# reset = 1
# print(f"long_mpc timings: total internal {self.solve_time:.2e}, external: {(sec_since_boot() - t0):.2e} qp {self.time_qp_solution:.2e}, \
# lin {self.time_linearization:.2e} qp_iter {qp_iter}, reset {reset}")
if __name__ == "__main__":
ocp = gen_long_ocp()
AcadosOcpSolver.generate(ocp, json_file=JSON_FILE)
# AcadosOcpSolver.build(ocp.code_export_directory, with_cython=True)