You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
151 lines
7.3 KiB
151 lines
7.3 KiB
from typing import Dict, List, cast, DefaultDict, Optional, Tuple, Callable
|
|
import itertools, random
|
|
from tinygrad.lazy import vars_from_ast
|
|
from tinygrad.ops import Device, Compiled, MemBuffer
|
|
from tinygrad.helpers import prod, ImageDType, flatten, DEBUG, CACHELEVEL, diskcache_get, diskcache_put, getenv, Context
|
|
from tinygrad.codegen.linearizer import Linearizer
|
|
from tinygrad.runtime.lib import RawBuffer
|
|
from collections import defaultdict
|
|
from tinygrad.tensor import Tensor
|
|
|
|
from tinygrad.codegen.kernel import Opt, OptOps
|
|
actions = flatten([[Opt(op=OptOps.UPCAST, axis=axis, amt=amt) for amt in [0,2,3,4,7]] for axis in range(6)])
|
|
actions += flatten([[Opt(op=OptOps.UNROLL, axis=axis, amt=amt) for amt in [0,4]] for axis in range(4)])
|
|
actions += flatten([[Opt(op=OptOps.LOCAL, axis=axis, amt=amt) for amt in [2,3,4,8,13,16,29]] for axis in range(5)])
|
|
actions += flatten([[Opt(op=OptOps.GROUPTOP, axis=axis, amt=amt) for amt in [13,16,29,32,256]] for axis in range(3)])
|
|
actions += [
|
|
Opt(op=OptOps.LOCAL, axis=0, amt=32),
|
|
Opt(op=OptOps.GROUP, axis=0, amt=4), Opt(op=OptOps.GROUP, axis=0, amt=8), Opt(op=OptOps.GROUP, axis=1, amt=8),
|
|
Opt(op=OptOps.UPCASTMID, axis=1, amt=4),
|
|
Opt(op=OptOps.NOLOCALS),
|
|
]
|
|
|
|
# returns time in seconds
|
|
def time_linearizer(lin:Linearizer, rawbufs:List[RawBuffer], allow_test_size=True, max_global_size=65536, cnt=3, disable_cache=False, clear_l2=False) -> float:
|
|
key = {"ast": str(lin.ast), "opts": str(lin.applied_opts), "allow_test_size": allow_test_size, "max_global_size": max_global_size}
|
|
if not disable_cache and CACHELEVEL >= 2 and (val:=diskcache_get("time_linearizer", key)) is not None: return min(val)
|
|
var_vals = {k:k.min for k in vars_from_ast(lin.ast)}
|
|
try:
|
|
lin.linearize()
|
|
prg = cast(Compiled, Device[Device.DEFAULT]).to_program(lin)
|
|
real_global_size = prg.global_size
|
|
if allow_test_size and prg.global_size:
|
|
test_global_size = prg.global_size[:]
|
|
while prod(test_global_size) > max_global_size:
|
|
for j in range(2,-1,-1):
|
|
if test_global_size[j] > 16:
|
|
test_global_size[j] //= 2
|
|
break
|
|
factor = prod(prg.global_size) / prod(test_global_size)
|
|
prg.global_size = test_global_size
|
|
#print(real_global_size, test_global_size, factor)
|
|
else:
|
|
factor = 1
|
|
# TODO: this is super broken for var_vals
|
|
# TODO: this is copied from prg.__call__
|
|
global_size, local_size = prg.launch_dims(var_vals)
|
|
if global_size is not None and local_size is None:
|
|
local_size = prg.optimize_local_size(global_size, rawbufs)
|
|
global_size = [g//l if g%l == 0 else g/l for g,l in zip(global_size, local_size)]
|
|
tms = []
|
|
for _ in range(cnt):
|
|
if clear_l2:
|
|
# TODO: this is too small for many L2 caches
|
|
with Context(DEBUG=0): Tensor.rand(1024,1024).realize()
|
|
lra = prg.runtime_args.copy()
|
|
if global_size: lra['global_size'] = global_size
|
|
if local_size: lra['local_size'] = local_size
|
|
tms.append(prg.clprg(*rawbufs, *var_vals.values(), **lra, wait=True)*factor)
|
|
prg.global_size = real_global_size
|
|
except Exception:
|
|
if DEBUG >= 4:
|
|
import traceback
|
|
traceback.print_exc()
|
|
print("FAILED")
|
|
print(lin.ast)
|
|
print(lin.applied_opts)
|
|
tms = [float('inf')]
|
|
if CACHELEVEL >= 2: diskcache_put("time_linearizer", key, tms)
|
|
return min(tms)
|
|
|
|
# get (scrap) buffers for timing the linearizer
|
|
def bufs_from_lin(lin:Linearizer) -> List[RawBuffer]:
|
|
bufsts:DefaultDict[int, List[MemBuffer]] = defaultdict(list)
|
|
for x in lin.membufs: bufsts[x.idx].append(x)
|
|
rawbufs:List[Optional[RawBuffer]] = [None]*len(bufsts)
|
|
for k,lx in bufsts.items():
|
|
rawbufs[k] = cast(Compiled, Device[Device.DEFAULT]).buffer(prod(lx[0].dtype.shape) if isinstance(lx[0].dtype, ImageDType) else max(y.st.size() for y in lx), lx[0].dtype)
|
|
assert all(r is not None for r in rawbufs)
|
|
return cast(List[RawBuffer], rawbufs)
|
|
|
|
# get dictionary of all possible actions
|
|
def get_linearizer_actions(lin:Linearizer, include_0=True) -> Dict[int, Linearizer]:
|
|
acted_lins = {0:lin} if include_0 else {}
|
|
for i,a in enumerate(actions):
|
|
if a.axis is not None and a.axis >= lin.shape_len: continue
|
|
if a.axis is not None and lin.full_shape[a.axis] == a.amt and Opt(a.op, a.axis, 0) in actions: continue
|
|
lin2 = lin.copy()
|
|
try:
|
|
lin2.apply_opt(a)
|
|
up, lcl = 1, 1
|
|
for s,c in zip(lin2.full_shape, lin2.colors()):
|
|
if c in {"magenta", "yellow"}: up *= s
|
|
if c in {"cyan", "green", "white"}: lcl *= s
|
|
if up > 256 or lcl > 256: continue
|
|
acted_lins[i+1] = lin2
|
|
except Exception:
|
|
pass
|
|
return acted_lins
|
|
|
|
def beam_search(lin:Linearizer, rawbufs, amt:int, allow_test_size=True) -> Linearizer:
|
|
key = {"ast": str(lin.ast), "amt": amt, "allow_test_size": allow_test_size}
|
|
if (val:=diskcache_get("beam_search", key)) is not None and not getenv("IGNORE_BEAM_CACHE") and CACHELEVEL >= 1:
|
|
ret = lin.copy()
|
|
for o in val[len(lin.applied_opts):]: ret.apply_opt(o)
|
|
return ret
|
|
|
|
# init the BEAM with the base linearizer
|
|
beam: List[Tuple[Linearizer, float]] = [(lin, time_linearizer(lin, rawbufs, allow_test_size=allow_test_size))]
|
|
|
|
# NOTE: real uops use a weird compare method that's only valid inside a linearizer
|
|
def tuplize_uops(uops): return tuple([(x.uop, x.dtype, tuple(x.num for x in x.vin), x.arg) for x in uops])
|
|
seen_uops = {tuplize_uops(lin.linearize().uops): tuple(lin.applied_opts)}
|
|
|
|
while 1:
|
|
acted_lins = lins = flatten([get_linearizer_actions(lin, include_0=False).values() for lin,_ in beam])
|
|
|
|
# dedup with uops (TODO: double linearize not needed)
|
|
acted_lins_dedup = []
|
|
for lin in acted_lins:
|
|
tuops = tuplize_uops(lin.linearize().uops)
|
|
if tuops in seen_uops:
|
|
#print(seen_uops[tuops], lin.applied_opts)
|
|
continue
|
|
seen_uops[tuops] = tuple(lin.applied_opts)
|
|
acted_lins_dedup.append(lin)
|
|
acted_lins = acted_lins_dedup
|
|
|
|
# time linearizers
|
|
timed_lins: List[Tuple[Linearizer, float]] = [(v,time_linearizer(v,rawbufs,allow_test_size=allow_test_size)) for v in acted_lins]
|
|
opts = sorted(timed_lins, key=lambda x: x[1])
|
|
if len(opts) == 0 or beam[0][1] <= opts[0][1]: break # we didn't get faster
|
|
|
|
# keep the BEAM best
|
|
beam = opts[:amt]
|
|
if DEBUG >= 2: print(f"{opts[0][1]*1e6:12.2f} us from {len(lins):3d} -> {len(opts):3d} actions", beam[0][0].colored_shape())
|
|
|
|
if CACHELEVEL >= 1: diskcache_put("beam_search", key, beam[0][0].applied_opts)
|
|
if DEBUG >= 3: print(beam[0][0].applied_opts)
|
|
return beam[0][0]
|
|
|
|
def optimize_local_size(clprg:Callable, global_size:List[int], rawbufs:List[RawBuffer]) -> List[int]:
|
|
test_rawbuffers = [type(rawbufs[0])(rawbufs[0].size, rawbufs[0].dtype), *rawbufs[1:]] if rawbufs[0] in rawbufs[1:] else rawbufs
|
|
MAX_WORKGROUP = clprg.max_work_group_size() if hasattr(clprg, 'max_work_group_size') else 1024
|
|
local_dims = [[x for x in set([sz, 1, 2, 4, 8, 16, 32, 64, 128, 256, MAX_WORKGROUP]) if x<=sz] for sz in global_size]
|
|
local_sizes = [list(x) for x in itertools.product(*local_dims) if prod(x) <= MAX_WORKGROUP] * 2 # try each valid size twice
|
|
def try_exec(local_size):
|
|
try:
|
|
return clprg(*test_rawbuffers, global_size=[g//l if g%l == 0 else g/l for g,l in zip(global_size, local_size)], local_size=local_size, wait=True)
|
|
except Exception:
|
|
return float('inf')
|
|
return min([(try_exec(local_size), local_size) for local_size in random.sample(local_sizes, len(local_sizes))])[1]
|
|
|