openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

93 lines
5.8 KiB

import subprocess, time, re, hashlib, tempfile
from pathlib import Path
from typing import Optional, Tuple
import numpy as np
from pycuda.compiler import compile as cuda_compile # type: ignore
from tinygrad.helpers import DEBUG, getenv, colored, diskcache
from tinygrad.ops import Compiled
from tinygrad.runtime.lib import RawBufferCopyInOut, RawMallocBuffer, LRUAllocator
from tinygrad.codegen.kernel import LinearizerOptions
from tinygrad.renderer.cuda import CUDARenderer
def pretty_ptx(s):
# all expressions match `<valid_before><expr><valid_after>` and replace it with `<valid_before>color(<expr>)<valid_after>`
s = re.sub(r'([!@<\[\s,\+\-;\n])((?:[_%$][\w%\$_]+(?:\.[xyz])?\:?)|(?:buf\d+))([<>\]\s,\+\-;\n\)])', lambda m:m[1]+colored(m[2], "blue")+m[3], s, flags=re.M) # identifiers
s = re.sub(r'(.)((?:b|s|u|f)(?:8|16|32|64)|pred)([\.\s])', lambda m:m[1]+colored(m[2], "green")+m[3], s, flags=re.M) # types
s = re.sub(r'^(\s*)([\w]+)(.*?;$)', lambda m:m[1]+colored(m[2], "yellow")+m[3], s, flags=re.M) # instructions
s = re.sub(r'([<>\[\]\s,\+\-;])((?:0[fF][0-9a-fA-F]{8})|(?:[0-9]+)|(?:0[xX][0-9a-fA-F]+))([<>\[\]\s,\+\-;])', lambda m:m[1]+colored(m[2], "yellow")+m[3], s, flags=re.M) # numbers
s = re.sub(r'(\.)(param|reg|global)', lambda m:m[1]+colored(m[2], "magenta"), s, flags=re.M) # space
s = re.sub(r'(\.)(version|target|address_size|visible|entry)', lambda m:m[1]+colored(m[2], "magenta"), s, flags=re.M) # derivatives
return s
def arch(): return "sm_" + "".join([str(x) for x in pycuda.driver.Context.get_device().compute_capability()])
if getenv("CUDACPU", 0) == 1:
import ctypes, ctypes.util
lib = ctypes.CDLL(ctypes.util.find_library("gpuocelot"))
lib.ptx_run.argtypes = [ctypes.c_char_p, ctypes.c_int, ctypes.POINTER(ctypes.c_void_p), ctypes.c_int, ctypes.c_int, ctypes.c_int, ctypes.c_int, ctypes.c_int, ctypes.c_int, ctypes.c_int]
class cuda:
class module:
def __init__(self, src): self.src = src
def get_function(self, _): return self
def __call__(self, *args, block, grid, shared): lib.ptx_run(self.src, len(args), (ctypes.c_void_p * len(args))(*[ctypes.cast(x, ctypes.c_void_p) for x in args]), *block, *grid, shared)
module_from_buffer = lambda src: cuda.module(src) # pylint: disable=unnecessary-lambda # noqa: E731
class Event:
def __init__(self): pass
def record(self): self.start = time.perf_counter()
def time_till(self, other): return other.start - self.start
def synchronize(self): pass
class Context:
synchronize = lambda:0 # noqa: E731
CompileError = Exception
class context:
class device:
compute_capability = lambda: (3,5) # pylint: disable=unnecessary-lambda # noqa: E731
get_device = lambda: context.device # pylint: disable=unnecessary-lambda # noqa: E731
import pycuda.driver # type: ignore
pycuda.driver.Context = context
RawCUDABuffer = RawMallocBuffer
else:
import pycuda.autoprimaryctx # type: ignore # pylint: disable=unused-import # noqa: F401
import pycuda.driver as cuda # type: ignore
class CUDAAllocator(LRUAllocator):
def _do_alloc(self, size, dtype, device, **kwargs): return cuda.mem_alloc(size * dtype.itemsize) # type: ignore
def _cached_bufkey(self, size, dtype, device): return (device, size*dtype.itemsize) # Buffers of the same length could be reused, no matter what dtype.
CUDAAlloc = CUDAAllocator(pycuda.driver.Context.get_device().total_memory())
class RawCUDABuffer(RawBufferCopyInOut): # type: ignore
def __init__(self, size, dtype): super().__init__(size, dtype, allocator=CUDAAlloc)
def _copyin(self, x:np.ndarray, stream:Optional[cuda.Stream]=None): cuda.memcpy_htod_async(self._buf, x.ravel(), stream) # type: ignore
def _copyout(self, x:np.ndarray): cuda.memcpy_dtoh(x, self._buf) # type: ignore
@diskcache
def compile_cuda(prg) -> bytes: return cuda_compile(prg, target="ptx", no_extern_c=True, options=['-Wno-deprecated-gpu-targets'])
class CUDAProgram:
def __init__(self, name:str, _prg:bytes):
prg = _prg.decode('utf-8')
if DEBUG >= 5: print(pretty_ptx(prg))
if DEBUG >= 6:
try:
fn = (Path(tempfile.gettempdir()) / f"tinycuda_{hashlib.md5(prg.encode('utf-8')).hexdigest()}").as_posix()
with open(fn + ".ptx", "wb") as f: f.write(prg.encode('utf-8'))
subprocess.run(["ptxas", f"-arch={arch()}", "-o", fn, fn+".ptx"], check=True)
print(subprocess.check_output(['nvdisasm', fn]).decode('utf-8'))
except Exception as e: print("failed to generate SASS", str(e))
# TODO: name is wrong, so we get it from the ptx using hacks
self.prg = cuda.module_from_buffer(prg.encode('utf-8')).get_function(prg.split(".visible .entry ")[1].split("(")[0])
def __call__(self, *args, global_size:Tuple[int,int,int], local_size:Tuple[int,int,int], shared:int=0, wait=False):
if wait:
start, end = cuda.Event(), cuda.Event()
start.record()
self.prg(*[x._buf if isinstance(x, RawCUDABuffer) else np.int32(x) if (isinstance(x, int) and not getenv("CUDACPU")) else x for x in args], block=tuple(local_size), grid=tuple(global_size), shared=shared)
if wait:
end.record()
end.synchronize()
return start.time_till(end)*1e-3
if getenv("TRITON") == 1:
from tinygrad.renderer.triton import uops_to_triton
CUDABuffer = Compiled(RawCUDABuffer, LinearizerOptions(supports_float4=False, supports_float4_alu=False, global_max = [65535, 65535, 2147483647], local_max = [64, 1024, 1024], has_shared=False),
uops_to_triton, lambda x: x.encode('utf-8'), CUDAProgram, cuda.Context.synchronize)
else:
CUDABuffer = Compiled(RawCUDABuffer, LinearizerOptions(supports_float4=False if getenv("PTX") else True, supports_float4_alu=False, global_max = [65535, 65535, 2147483647], local_max = [64, 1024, 1024]),
CUDARenderer, compile_cuda, CUDAProgram, cuda.Context.synchronize)