You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
172 lines
8.5 KiB
172 lines
8.5 KiB
# ruff: noqa: E701
|
|
import capnp
|
|
import numpy as np
|
|
from typing import Dict
|
|
from cereal import log
|
|
from openpilot.selfdrive.modeld.constants import (
|
|
DISENGAGE_WIDTH, DESIRE_PRED_LEN, FCW_THRESHOLDS_5MS2, FCW_THRESHOLDS_3MS2, IDX_N, LEAD_T_IDXS,
|
|
LEAD_T_OFFSETS, META_T_IDXS, MODEL_FREQ, RYG_GREEN, RYG_YELLOW, T_IDXS, X_IDXS, Plan, Meta
|
|
)
|
|
|
|
ConfidenceClass = log.ModelDataV2.ConfidenceClass
|
|
|
|
class PublishState:
|
|
def __init__(self):
|
|
self.disengage_buffer = np.zeros(DISENGAGE_WIDTH*(DESIRE_PRED_LEN+1), dtype=np.float32)
|
|
self.prev_brake_5ms2_probs = np.zeros(DISENGAGE_WIDTH, dtype=np.float32)
|
|
self.prev_brake_3ms2_probs = np.zeros(DISENGAGE_WIDTH, dtype=np.float32)
|
|
|
|
def enqueue(self, x, sample, length=None):
|
|
if length is None: length = len(sample)
|
|
x[:-length] = x[length:]
|
|
x[-length:] = sample
|
|
|
|
def fill_xyzt(builder, t, x, y, z, x_std=None, y_std=None, z_std=None):
|
|
builder.t = t
|
|
builder.x = x.tolist()
|
|
builder.y = y.tolist()
|
|
builder.z = z.tolist()
|
|
if x_std is not None: builder.xStd = x_std.tolist()
|
|
if y_std is not None: builder.yStd = y_std.tolist()
|
|
if z_std is not None: builder.zStd = z_std.tolist()
|
|
|
|
def fill_xyvat(builder, t, x, y, v, a, x_std=None, y_std=None, v_std=None, a_std=None):
|
|
builder.t = t
|
|
builder.x = x.tolist()
|
|
builder.y = y.tolist()
|
|
builder.v = v.tolist()
|
|
builder.a = a.tolist()
|
|
if x_std is not None: builder.xStd = x_std.tolist()
|
|
if y_std is not None: builder.yStd = y_std.tolist()
|
|
if v_std is not None:builder.vStd = v_std.tolist()
|
|
if a_std is not None:builder.aStd = a_std.tolist()
|
|
|
|
def fill_model_msg(msg: capnp._DynamicStructBuilder, net_output_data: Dict[str, np.ndarray], publish_state: PublishState,
|
|
vipc_frame_id: int, vipc_frame_id_extra: int, frame_id: int, frame_drop: float,
|
|
timestamp_eof: int, timestamp_llk: int, model_execution_time: float,
|
|
nav_enabled: bool, valid: bool) -> None:
|
|
frame_age = frame_id - vipc_frame_id if frame_id > vipc_frame_id else 0
|
|
msg.valid = valid
|
|
|
|
modelV2 = msg.modelV2
|
|
modelV2.frameId = vipc_frame_id
|
|
modelV2.frameIdExtra = vipc_frame_id_extra
|
|
modelV2.frameAge = frame_age
|
|
modelV2.frameDropPerc = frame_drop * 100
|
|
modelV2.timestampEof = timestamp_eof
|
|
modelV2.locationMonoTime = timestamp_llk
|
|
modelV2.modelExecutionTime = model_execution_time
|
|
modelV2.navEnabled = nav_enabled
|
|
|
|
# plan
|
|
position = modelV2.position
|
|
fill_xyzt(position, T_IDXS, *net_output_data['plan'][0,:,Plan.POSITION].T, *net_output_data['plan_stds'][0,:,Plan.POSITION].T)
|
|
velocity = modelV2.velocity
|
|
fill_xyzt(velocity, T_IDXS, *net_output_data['plan'][0,:,Plan.VELOCITY].T)
|
|
acceleration = modelV2.acceleration
|
|
fill_xyzt(acceleration, T_IDXS, *net_output_data['plan'][0,:,Plan.ACCELERATION].T)
|
|
orientation = modelV2.orientation
|
|
fill_xyzt(orientation, T_IDXS, *net_output_data['plan'][0,:,Plan.T_FROM_CURRENT_EULER].T)
|
|
orientation_rate = modelV2.orientationRate
|
|
fill_xyzt(orientation_rate, T_IDXS, *net_output_data['plan'][0,:,Plan.ORIENTATION_RATE].T)
|
|
|
|
# times at X_IDXS according to model plan
|
|
PLAN_T_IDXS = [np.nan] * IDX_N
|
|
PLAN_T_IDXS[0] = 0.0
|
|
plan_x = net_output_data['plan'][0,:,Plan.POSITION][:,0].tolist()
|
|
for xidx in range(1, IDX_N):
|
|
tidx = 0
|
|
# increment tidx until we find an element that's further away than the current xidx
|
|
while tidx < IDX_N - 1 and plan_x[tidx+1] < X_IDXS[xidx]:
|
|
tidx += 1
|
|
if tidx == IDX_N - 1:
|
|
# if the Plan doesn't extend far enough, set plan_t to the max value (10s), then break
|
|
PLAN_T_IDXS[xidx] = T_IDXS[IDX_N - 1]
|
|
break
|
|
# interpolate to find `t` for the current xidx
|
|
current_x_val = plan_x[tidx]
|
|
next_x_val = plan_x[tidx+1]
|
|
p = (X_IDXS[xidx] - current_x_val) / (next_x_val - current_x_val)
|
|
PLAN_T_IDXS[xidx] = p * T_IDXS[tidx+1] + (1 - p) * T_IDXS[tidx]
|
|
|
|
# lane lines
|
|
modelV2.init('laneLines', 4)
|
|
for i in range(4):
|
|
lane_line = modelV2.laneLines[i]
|
|
fill_xyzt(lane_line, PLAN_T_IDXS, np.array(X_IDXS), net_output_data['lane_lines'][0,i,:,0], net_output_data['lane_lines'][0,i,:,1])
|
|
modelV2.laneLineStds = net_output_data['lane_lines_stds'][0,:,0,0].tolist()
|
|
modelV2.laneLineProbs = net_output_data['lane_lines_prob'][0,1::2].tolist()
|
|
|
|
# road edges
|
|
modelV2.init('roadEdges', 2)
|
|
for i in range(2):
|
|
road_edge = modelV2.roadEdges[i]
|
|
fill_xyzt(road_edge, PLAN_T_IDXS, np.array(X_IDXS), net_output_data['road_edges'][0,i,:,0], net_output_data['road_edges'][0,i,:,1])
|
|
modelV2.roadEdgeStds = net_output_data['road_edges_stds'][0,:,0,0].tolist()
|
|
|
|
# leads
|
|
modelV2.init('leadsV3', 3)
|
|
for i in range(3):
|
|
lead = modelV2.leadsV3[i]
|
|
fill_xyvat(lead, LEAD_T_IDXS, *net_output_data['lead'][0,i].T, *net_output_data['lead_stds'][0,i].T)
|
|
lead.prob = net_output_data['lead_prob'][0,i].tolist()
|
|
lead.probTime = LEAD_T_OFFSETS[i]
|
|
|
|
# meta
|
|
meta = modelV2.meta
|
|
meta.desireState = net_output_data['desire_state'][0].reshape(-1).tolist()
|
|
meta.desirePrediction = net_output_data['desire_pred'][0].reshape(-1).tolist()
|
|
meta.engagedProb = net_output_data['meta'][0,Meta.ENGAGED].item()
|
|
meta.init('disengagePredictions')
|
|
disengage_predictions = meta.disengagePredictions
|
|
disengage_predictions.t = META_T_IDXS
|
|
disengage_predictions.brakeDisengageProbs = net_output_data['meta'][0,Meta.BRAKE_DISENGAGE].tolist()
|
|
disengage_predictions.gasDisengageProbs = net_output_data['meta'][0,Meta.GAS_DISENGAGE].tolist()
|
|
disengage_predictions.steerOverrideProbs = net_output_data['meta'][0,Meta.STEER_OVERRIDE].tolist()
|
|
disengage_predictions.brake3MetersPerSecondSquaredProbs = net_output_data['meta'][0,Meta.HARD_BRAKE_3].tolist()
|
|
disengage_predictions.brake4MetersPerSecondSquaredProbs = net_output_data['meta'][0,Meta.HARD_BRAKE_4].tolist()
|
|
disengage_predictions.brake5MetersPerSecondSquaredProbs = net_output_data['meta'][0,Meta.HARD_BRAKE_5].tolist()
|
|
|
|
publish_state.enqueue(publish_state.prev_brake_5ms2_probs, net_output_data['meta'][0,Meta.HARD_BRAKE_5][0], length=1)
|
|
publish_state.enqueue(publish_state.prev_brake_3ms2_probs, net_output_data['meta'][0,Meta.HARD_BRAKE_3][0], length=1)
|
|
hard_brake_predicted = (publish_state.prev_brake_5ms2_probs > FCW_THRESHOLDS_5MS2).all() and (publish_state.prev_brake_3ms2_probs > FCW_THRESHOLDS_3MS2).all()
|
|
meta.hardBrakePredicted = hard_brake_predicted.item()
|
|
|
|
# temporal pose
|
|
temporal_pose = modelV2.temporalPose
|
|
temporal_pose.trans = net_output_data['sim_pose'][0,:3].tolist()
|
|
temporal_pose.transStd = net_output_data['sim_pose_stds'][0,:3].tolist()
|
|
temporal_pose.rot = net_output_data['sim_pose'][0,3:].tolist()
|
|
temporal_pose.rotStd = net_output_data['sim_pose_stds'][0,3:].tolist()
|
|
|
|
# confidence
|
|
if vipc_frame_id % (2*MODEL_FREQ) == 0:
|
|
# any disengage prob
|
|
brake_disengage_probs = net_output_data['meta'][0,Meta.BRAKE_DISENGAGE]
|
|
gas_disengage_probs = net_output_data['meta'][0,Meta.GAS_DISENGAGE]
|
|
steer_override_probs = net_output_data['meta'][0,Meta.STEER_OVERRIDE]
|
|
any_disengage_probs = 1-((1-brake_disengage_probs)*(1-gas_disengage_probs)*(1-steer_override_probs))
|
|
# independent disengage prob for each 2s slice
|
|
ind_disengage_probs = np.r_[any_disengage_probs[0], np.diff(any_disengage_probs) / (1 - any_disengage_probs[:-1])]
|
|
# rolling buf for 2, 4, 6, 8, 10s
|
|
publish_state.enqueue(publish_state.disengage_buffer, ind_disengage_probs, length=DISENGAGE_WIDTH)
|
|
|
|
score = publish_state.disengage_buffer[DISENGAGE_WIDTH-1:DISENGAGE_WIDTH*DISENGAGE_WIDTH-1:DISENGAGE_WIDTH-1].sum().item()/DISENGAGE_WIDTH
|
|
modelV2.confidence = (score<RYG_GREEN)*ConfidenceClass.green + (RYG_GREEN<score<RYG_YELLOW)*ConfidenceClass.yellow + (score>RYG_YELLOW)*ConfidenceClass.red
|
|
|
|
def fill_pose_msg(msg: capnp._DynamicStructBuilder, net_output_data: Dict[str, np.ndarray],
|
|
vipc_frame_id: int, vipc_dropped_frames: int, timestamp_eof: int, live_calib_seen: bool) -> None:
|
|
msg.valid = live_calib_seen & (vipc_dropped_frames < 1)
|
|
cameraOdometry = msg.cameraOdometry
|
|
|
|
cameraOdometry.frameId = vipc_frame_id
|
|
cameraOdometry.timestampEof = timestamp_eof
|
|
|
|
cameraOdometry.trans = net_output_data['pose'][0,:3].tolist()
|
|
cameraOdometry.rot = net_output_data['pose'][0,3:].tolist()
|
|
cameraOdometry.wideFromDeviceEuler = net_output_data['wide_from_device_euler'][0,:].tolist()
|
|
cameraOdometry.roadTransformTrans = net_output_data['road_transform'][0,:3].tolist()
|
|
cameraOdometry.transStd = net_output_data['pose_stds'][0,:3].tolist()
|
|
cameraOdometry.rotStd = net_output_data['pose_stds'][0,3:].tolist()
|
|
cameraOdometry.wideFromDeviceEulerStd = net_output_data['wide_from_device_euler_stds'][0,:].tolist()
|
|
cameraOdometry.roadTransformTransStd = net_output_data['road_transform_stds'][0,:3].tolist()
|
|
|