openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

117 lines
4.4 KiB

import numpy as np
from common.transformations.camera import (FULL_FRAME_SIZE,
get_view_frame_from_calib_frame)
# segnet
SEGNET_SIZE = (512, 384)
def get_segnet_frame_from_camera_frame(segnet_size=SEGNET_SIZE, full_frame_size=FULL_FRAME_SIZE):
return np.array([[float(segnet_size[0]) / full_frame_size[0], 0.0],
[0.0, float(segnet_size[1]) / full_frame_size[1]]])
segnet_frame_from_camera_frame = get_segnet_frame_from_camera_frame() # xx
# MED model
MEDMODEL_INPUT_SIZE = (512, 256)
MEDMODEL_YUV_SIZE = (MEDMODEL_INPUT_SIZE[0], MEDMODEL_INPUT_SIZE[1] * 3 // 2)
MEDMODEL_CY = 47.6
medmodel_fl = 910.0
medmodel_intrinsics = np.array([
[medmodel_fl, 0.0, 0.5 * MEDMODEL_INPUT_SIZE[0]],
[0.0, medmodel_fl, MEDMODEL_CY],
[0.0, 0.0, 1.0]])
# BIG model
BIGMODEL_INPUT_SIZE = (1024, 512)
BIGMODEL_YUV_SIZE = (BIGMODEL_INPUT_SIZE[0], BIGMODEL_INPUT_SIZE[1] * 3 // 2)
bigmodel_fl = 910.0
bigmodel_intrinsics = np.array([
[bigmodel_fl, 0.0, 0.5 * BIGMODEL_INPUT_SIZE[0]],
[0.0, bigmodel_fl, 256 + MEDMODEL_CY],
[0.0, 0.0, 1.0]])
# SBIG model (big model with the size of small model)
SBIGMODEL_INPUT_SIZE = (512, 256)
SBIGMODEL_YUV_SIZE = (SBIGMODEL_INPUT_SIZE[0], SBIGMODEL_INPUT_SIZE[1] * 3 // 2)
sbigmodel_fl = 455.0
sbigmodel_intrinsics = np.array([
[sbigmodel_fl, 0.0, 0.5 * SBIGMODEL_INPUT_SIZE[0]],
[0.0, sbigmodel_fl, 0.5 * (256 + MEDMODEL_CY)],
[0.0, 0.0, 1.0]])
bigmodel_frame_from_calib_frame = np.dot(bigmodel_intrinsics,
get_view_frame_from_calib_frame(0, 0, 0, 0))
sbigmodel_frame_from_calib_frame = np.dot(sbigmodel_intrinsics,
get_view_frame_from_calib_frame(0, 0, 0, 0))
medmodel_frame_from_calib_frame = np.dot(medmodel_intrinsics,
get_view_frame_from_calib_frame(0, 0, 0, 0))
medmodel_frame_from_bigmodel_frame = np.dot(medmodel_intrinsics, np.linalg.inv(bigmodel_intrinsics))
### This function mimics the update_calibration logic in modeld.cc
### Manually verified to give similar results to xx.uncommon.utils.transform_img
def get_warp_matrix(rpy_calib, wide_cam=False, big_model=False, tici=True):
from common.transformations.orientation import rot_from_euler
from common.transformations.camera import view_frame_from_device_frame, eon_fcam_intrinsics, tici_ecam_intrinsics, tici_fcam_intrinsics
if tici and wide_cam:
intrinsics = tici_ecam_intrinsics
elif tici:
intrinsics = tici_fcam_intrinsics
else:
intrinsics = eon_fcam_intrinsics
if big_model:
sbigmodel_from_calib = sbigmodel_frame_from_calib_frame[:, (0,1,2)]
calib_from_model = np.linalg.inv(sbigmodel_from_calib)
else:
medmodel_from_calib = medmodel_frame_from_calib_frame[:, (0,1,2)]
calib_from_model = np.linalg.inv(medmodel_from_calib)
device_from_calib = rot_from_euler(rpy_calib)
camera_from_calib = intrinsics.dot(view_frame_from_device_frame.dot(device_from_calib))
warp_matrix = camera_from_calib.dot(calib_from_model)
return warp_matrix
### This is old, just for debugging
def get_warp_matrix_old(rpy_calib, wide_cam=False, big_model=False, tici=True):
from common.transformations.orientation import rot_from_euler
from common.transformations.camera import view_frame_from_device_frame, eon_fcam_intrinsics, tici_ecam_intrinsics, tici_fcam_intrinsics
def get_view_frame_from_road_frame(roll, pitch, yaw, height):
device_from_road = rot_from_euler([roll, pitch, yaw]).dot(np.diag([1, -1, -1]))
view_from_road = view_frame_from_device_frame.dot(device_from_road)
return np.hstack((view_from_road, [[0], [height], [0]]))
if tici and wide_cam:
intrinsics = tici_ecam_intrinsics
elif tici:
intrinsics = tici_fcam_intrinsics
else:
intrinsics = eon_fcam_intrinsics
model_height = 1.22
if big_model:
model_from_road = np.dot(sbigmodel_intrinsics,
get_view_frame_from_road_frame(0, 0, 0, model_height))
else:
model_from_road = np.dot(medmodel_intrinsics,
get_view_frame_from_road_frame(0, 0, 0, model_height))
ground_from_model = np.linalg.inv(model_from_road[:, (0, 1, 3)])
E = get_view_frame_from_road_frame(*rpy_calib, 1.22)
camera_frame_from_road_frame = intrinsics.dot(E)
camera_frame_from_ground = camera_frame_from_road_frame[:,(0,1,3)]
warp_matrix = camera_frame_from_ground .dot(ground_from_model)
return warp_matrix