openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

425 lines
7.1 KiB

/*
* This file is part of qpOASES.
*
* qpOASES -- An Implementation of the Online Active Set Strategy.
* Copyright (C) 2007-2008 by Hans Joachim Ferreau et al. All rights reserved.
*
* qpOASES is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* qpOASES is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with qpOASES; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/**
* \file SRC/QProblemB.ipp
* \author Hans Joachim Ferreau
* \version 1.3embedded
* \date 2007-2008
*
* Implementation of inlined member functions of the QProblemB class which
* is able to use the newly developed online active set strategy for
* parametric quadratic programming.
*/
#include <math.h>
/*****************************************************************************
* P U B L I C *
*****************************************************************************/
/*
* g e t H
*/
inline returnValue QProblemB::getH( real_t* const _H ) const
{
int i;
for ( i=0; i<getNV( )*getNV( ); ++i )
_H[i] = H[i];
return SUCCESSFUL_RETURN;
}
/*
* g e t G
*/
inline returnValue QProblemB::getG( real_t* const _g ) const
{
int i;
for ( i=0; i<getNV( ); ++i )
_g[i] = g[i];
return SUCCESSFUL_RETURN;
}
/*
* g e t L B
*/
inline returnValue QProblemB::getLB( real_t* const _lb ) const
{
int i;
for ( i=0; i<getNV( ); ++i )
_lb[i] = lb[i];
return SUCCESSFUL_RETURN;
}
/*
* g e t L B
*/
inline returnValue QProblemB::getLB( int number, real_t& value ) const
{
if ( ( number >= 0 ) && ( number < getNV( ) ) )
{
value = lb[number];
return SUCCESSFUL_RETURN;
}
else
{
return THROWERROR( RET_INDEX_OUT_OF_BOUNDS );
}
}
/*
* g e t U B
*/
inline returnValue QProblemB::getUB( real_t* const _ub ) const
{
int i;
for ( i=0; i<getNV( ); ++i )
_ub[i] = ub[i];
return SUCCESSFUL_RETURN;
}
/*
* g e t U B
*/
inline returnValue QProblemB::getUB( int number, real_t& value ) const
{
if ( ( number >= 0 ) && ( number < getNV( ) ) )
{
value = ub[number];
return SUCCESSFUL_RETURN;
}
else
{
return THROWERROR( RET_INDEX_OUT_OF_BOUNDS );
}
}
/*
* g e t B o u n d s
*/
inline returnValue QProblemB::getBounds( Bounds* const _bounds ) const
{
*_bounds = bounds;
return SUCCESSFUL_RETURN;
}
/*
* g e t N V
*/
inline int QProblemB::getNV( ) const
{
return bounds.getNV( );
}
/*
* g e t N F R
*/
inline int QProblemB::getNFR( )
{
return bounds.getNFR( );
}
/*
* g e t N F X
*/
inline int QProblemB::getNFX( )
{
return bounds.getNFX( );
}
/*
* g e t N F V
*/
inline int QProblemB::getNFV( ) const
{
return bounds.getNFV( );
}
/*
* g e t S t a t u s
*/
inline QProblemStatus QProblemB::getStatus( ) const
{
return status;
}
/*
* i s I n i t i a l i s e d
*/
inline BooleanType QProblemB::isInitialised( ) const
{
if ( status == QPS_NOTINITIALISED )
return BT_FALSE;
else
return BT_TRUE;
}
/*
* i s S o l v e d
*/
inline BooleanType QProblemB::isSolved( ) const
{
if ( status == QPS_SOLVED )
return BT_TRUE;
else
return BT_FALSE;
}
/*
* i s I n f e a s i b l e
*/
inline BooleanType QProblemB::isInfeasible( ) const
{
return infeasible;
}
/*
* i s U n b o u n d e d
*/
inline BooleanType QProblemB::isUnbounded( ) const
{
return unbounded;
}
/*
* g e t P r i n t L e v e l
*/
inline PrintLevel QProblemB::getPrintLevel( ) const
{
return printlevel;
}
/*
* g e t H e s s i a n T y p e
*/
inline HessianType QProblemB::getHessianType( ) const
{
return hessianType;
}
/*
* s e t H e s s i a n T y p e
*/
inline returnValue QProblemB::setHessianType( HessianType _hessianType )
{
hessianType = _hessianType;
return SUCCESSFUL_RETURN;
}
/*****************************************************************************
* P R O T E C T E D *
*****************************************************************************/
/*
* s e t H
*/
inline returnValue QProblemB::setH( const real_t* const H_new )
{
int i, j;
int nV = getNV();
for( i=0; i<nV; ++i )
for( j=0; j<nV; ++j )
H[i*NVMAX + j] = H_new[i*nV + j];
return SUCCESSFUL_RETURN;
}
/*
* s e t G
*/
inline returnValue QProblemB::setG( const real_t* const g_new )
{
int i;
int nV = getNV();
for( i=0; i<nV; ++i )
g[i] = g_new[i];
return SUCCESSFUL_RETURN;
}
/*
* s e t L B
*/
inline returnValue QProblemB::setLB( const real_t* const lb_new )
{
int i;
int nV = getNV();
for( i=0; i<nV; ++i )
lb[i] = lb_new[i];
return SUCCESSFUL_RETURN;
}
/*
* s e t L B
*/
inline returnValue QProblemB::setLB( int number, real_t value )
{
if ( ( number >= 0 ) && ( number < getNV( ) ) )
{
lb[number] = value;
return SUCCESSFUL_RETURN;
}
else
{
return THROWERROR( RET_INDEX_OUT_OF_BOUNDS );
}
}
/*
* s e t U B
*/
inline returnValue QProblemB::setUB( const real_t* const ub_new )
{
int i;
int nV = getNV();
for( i=0; i<nV; ++i )
ub[i] = ub_new[i];
return SUCCESSFUL_RETURN;
}
/*
* s e t U B
*/
inline returnValue QProblemB::setUB( int number, real_t value )
{
if ( ( number >= 0 ) && ( number < getNV( ) ) )
{
ub[number] = value;
return SUCCESSFUL_RETURN;
}
else
{
return THROWERROR( RET_INDEX_OUT_OF_BOUNDS );
}
}
/*
* c o m p u t e G i v e n s
*/
inline void QProblemB::computeGivens( real_t xold, real_t yold, real_t& xnew, real_t& ynew,
real_t& c, real_t& s
) const
{
if ( getAbs( yold ) <= ZERO )
{
c = 1.0;
s = 0.0;
xnew = xold;
ynew = yold;
}
else
{
real_t t, mu;
mu = getAbs( xold );
if ( getAbs( yold ) > mu )
mu = getAbs( yold );
t = mu * sqrt( (xold/mu)*(xold/mu) + (yold/mu)*(yold/mu) );
if ( xold < 0.0 )
t = -t;
c = xold/t;
s = yold/t;
xnew = t;
ynew = 0.0;
}
return;
}
/*
* a p p l y G i v e n s
*/
inline void QProblemB::applyGivens( real_t c, real_t s, real_t xold, real_t yold,
real_t& xnew, real_t& ynew
) const
{
/* Usual Givens plane rotation requiring four multiplications. */
xnew = c*xold + s*yold;
ynew = -s*xold + c*yold;
// double nu = s/(1.0+c);
//
// xnew = xold*c + yold*s;
// ynew = (xnew+xold)*nu - yold;
return;
}
/*
* end of file
*/