You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							190 lines
						
					
					
						
							7.5 KiB
						
					
					
				
			
		
		
	
	
							190 lines
						
					
					
						
							7.5 KiB
						
					
					
				import numpy as np
 | 
						|
from collections import defaultdict
 | 
						|
from enum import Enum
 | 
						|
 | 
						|
from openpilot.tools.lib.logreader import LogReader
 | 
						|
from openpilot.selfdrive.test.process_replay.migration import migrate_all
 | 
						|
from openpilot.selfdrive.test.process_replay.process_replay import replay_process_with_name
 | 
						|
 | 
						|
# TODO find a new segment to test
 | 
						|
TEST_ROUTE = "4019fff6e54cf1c7|00000123--4bc0d95ef6/5"
 | 
						|
GPS_MESSAGES = ['gpsLocationExternal', 'gpsLocation']
 | 
						|
SELECT_COMPARE_FIELDS = {
 | 
						|
  'yaw_rate': ['angularVelocityDevice', 'z'],
 | 
						|
  'roll': ['orientationNED', 'x'],
 | 
						|
  'inputs_flag': ['inputsOK'],
 | 
						|
  'sensors_flag': ['sensorsOK'],
 | 
						|
}
 | 
						|
JUNK_IDX = 100
 | 
						|
CONSISTENT_SPIKES_COUNT = 10
 | 
						|
 | 
						|
 | 
						|
class Scenario(Enum):
 | 
						|
  BASE = 'base'
 | 
						|
  GYRO_OFF = 'gyro_off'
 | 
						|
  GYRO_SPIKE_MIDWAY = 'gyro_spike_midway'
 | 
						|
  GYRO_CONSISTENT_SPIKES = 'gyro_consistent_spikes'
 | 
						|
  ACCEL_OFF = 'accel_off'
 | 
						|
  ACCEL_SPIKE_MIDWAY = 'accel_spike_midway'
 | 
						|
  ACCEL_CONSISTENT_SPIKES = 'accel_consistent_spikes'
 | 
						|
  SENSOR_TIMING_SPIKE_MIDWAY = 'timing_spikes'
 | 
						|
  SENSOR_TIMING_CONSISTENT_SPIKES = 'timing_consistent_spikes'
 | 
						|
 | 
						|
 | 
						|
def get_select_fields_data(logs):
 | 
						|
  def get_nested_keys(msg, keys):
 | 
						|
    val = None
 | 
						|
    for key in keys:
 | 
						|
      val = getattr(msg if val is None else val, key) if isinstance(key, str) else val[key]
 | 
						|
    return val
 | 
						|
  lp = [x.livePose for x in logs if x.which() == 'livePose']
 | 
						|
  data = defaultdict(list)
 | 
						|
  for msg in lp:
 | 
						|
    for key, fields in SELECT_COMPARE_FIELDS.items():
 | 
						|
      data[key].append(get_nested_keys(msg, fields))
 | 
						|
  for key in data:
 | 
						|
    data[key] = np.array(data[key][JUNK_IDX:], dtype=float)
 | 
						|
  return data
 | 
						|
 | 
						|
 | 
						|
def modify_logs_midway(logs, which, count, fn):
 | 
						|
  non_which = [x for x in logs if x.which() != which]
 | 
						|
  which = [x for x in logs if x.which() == which]
 | 
						|
  temps = which[len(which) // 2:len(which) // 2 + count]
 | 
						|
  for i, temp in enumerate(temps):
 | 
						|
    temp = temp.as_builder()
 | 
						|
    fn(temp)
 | 
						|
    which[len(which) // 2 + i] = temp.as_reader()
 | 
						|
  return sorted(non_which + which, key=lambda x: x.logMonoTime)
 | 
						|
 | 
						|
 | 
						|
def run_scenarios(scenario, logs):
 | 
						|
  if scenario == Scenario.BASE:
 | 
						|
    pass
 | 
						|
 | 
						|
  elif scenario == Scenario.GYRO_OFF:
 | 
						|
    logs = sorted([x for x in logs if x.which() != 'gyroscope'], key=lambda x: x.logMonoTime)
 | 
						|
 | 
						|
  elif scenario == Scenario.GYRO_SPIKE_MIDWAY or scenario == Scenario.GYRO_CONSISTENT_SPIKES:
 | 
						|
    def gyro_spike(msg):
 | 
						|
      msg.gyroscope.gyroUncalibrated.v[0] += 3.0
 | 
						|
    count = 1 if scenario == Scenario.GYRO_SPIKE_MIDWAY else CONSISTENT_SPIKES_COUNT
 | 
						|
    logs = modify_logs_midway(logs, 'gyroscope', count, gyro_spike)
 | 
						|
 | 
						|
  elif scenario == Scenario.ACCEL_OFF:
 | 
						|
    logs = sorted([x for x in logs if x.which() != 'accelerometer'], key=lambda x: x.logMonoTime)
 | 
						|
 | 
						|
  elif scenario == Scenario.ACCEL_SPIKE_MIDWAY or scenario == Scenario.ACCEL_CONSISTENT_SPIKES:
 | 
						|
    def acc_spike(msg):
 | 
						|
      msg.accelerometer.acceleration.v[0] += 100.0
 | 
						|
    count = 1 if scenario == Scenario.ACCEL_SPIKE_MIDWAY else CONSISTENT_SPIKES_COUNT
 | 
						|
    logs = modify_logs_midway(logs, 'accelerometer', count, acc_spike)
 | 
						|
 | 
						|
  elif scenario == Scenario.SENSOR_TIMING_SPIKE_MIDWAY or scenario == Scenario.SENSOR_TIMING_CONSISTENT_SPIKES:
 | 
						|
    def timing_spike(msg):
 | 
						|
      msg.accelerometer.timestamp -= int(0.150 * 1e9)
 | 
						|
    count = 1 if scenario == Scenario.SENSOR_TIMING_SPIKE_MIDWAY else CONSISTENT_SPIKES_COUNT
 | 
						|
    logs = modify_logs_midway(logs, 'accelerometer', count, timing_spike)
 | 
						|
 | 
						|
  replayed_logs = replay_process_with_name(name='locationd', lr=logs)
 | 
						|
  return get_select_fields_data(logs), get_select_fields_data(replayed_logs)
 | 
						|
 | 
						|
 | 
						|
class TestLocationdScenarios:
 | 
						|
  """
 | 
						|
  Test locationd with different scenarios. In all these scenarios, we expect the following:
 | 
						|
    - locationd kalman filter should never go unstable (we care mostly about yaw_rate, roll, gpsOK, inputsOK, sensorsOK)
 | 
						|
    - faulty values should be ignored, with appropriate flags set
 | 
						|
  """
 | 
						|
 | 
						|
  @classmethod
 | 
						|
  def setup_class(cls):
 | 
						|
    cls.logs = migrate_all(LogReader(TEST_ROUTE))
 | 
						|
 | 
						|
  def test_base(self):
 | 
						|
    """
 | 
						|
    Test: unchanged log
 | 
						|
    Expected Result:
 | 
						|
      - yaw_rate: unchanged
 | 
						|
      - roll: unchanged
 | 
						|
    """
 | 
						|
    orig_data, replayed_data = run_scenarios(Scenario.BASE, self.logs)
 | 
						|
    assert np.allclose(orig_data['yaw_rate'], replayed_data['yaw_rate'], atol=np.radians(0.35))
 | 
						|
    assert np.allclose(orig_data['roll'], replayed_data['roll'], atol=np.radians(0.55))
 | 
						|
 | 
						|
  def test_gyro_off(self):
 | 
						|
    """
 | 
						|
    Test: no gyroscope message for the entire segment
 | 
						|
    Expected Result:
 | 
						|
      - yaw_rate: 0
 | 
						|
      - roll: 0
 | 
						|
      - sensorsOK: False
 | 
						|
    """
 | 
						|
    _, replayed_data = run_scenarios(Scenario.GYRO_OFF, self.logs)
 | 
						|
    assert np.allclose(replayed_data['yaw_rate'], 0.0)
 | 
						|
    assert np.allclose(replayed_data['roll'], 0.0)
 | 
						|
    assert np.all(replayed_data['sensors_flag'] == 0.0)
 | 
						|
 | 
						|
  def test_gyro_spike(self):
 | 
						|
    """
 | 
						|
    Test: a gyroscope spike in the middle of the segment
 | 
						|
    Expected Result:
 | 
						|
      - yaw_rate: unchanged
 | 
						|
      - roll: unchanged
 | 
						|
      - inputsOK: False for some time after the spike, True for the rest
 | 
						|
    """
 | 
						|
    orig_data, replayed_data = run_scenarios(Scenario.GYRO_SPIKE_MIDWAY, self.logs)
 | 
						|
    assert np.allclose(orig_data['yaw_rate'], replayed_data['yaw_rate'], atol=np.radians(0.35))
 | 
						|
    assert np.allclose(orig_data['roll'], replayed_data['roll'], atol=np.radians(0.55))
 | 
						|
    assert np.all(replayed_data['inputs_flag'] == orig_data['inputs_flag'])
 | 
						|
    assert np.all(replayed_data['sensors_flag'] == orig_data['sensors_flag'])
 | 
						|
 | 
						|
  def test_consistent_gyro_spikes(self):
 | 
						|
    """
 | 
						|
    Test: consistent timing spikes for N gyroscope messages in the middle of the segment
 | 
						|
    Expected Result: inputsOK becomes False after N of bad measurements
 | 
						|
    """
 | 
						|
    orig_data, replayed_data = run_scenarios(Scenario.GYRO_CONSISTENT_SPIKES, self.logs)
 | 
						|
    assert np.diff(replayed_data['inputs_flag'])[501] == -1.0
 | 
						|
    assert np.diff(replayed_data['inputs_flag'])[708] == 1.0
 | 
						|
 | 
						|
  def test_accel_off(self):
 | 
						|
    """
 | 
						|
    Test: no accelerometer message for the entire segment
 | 
						|
    Expected Result:
 | 
						|
      - yaw_rate: 0
 | 
						|
      - roll: 0
 | 
						|
      - sensorsOK: False
 | 
						|
    """
 | 
						|
    _, replayed_data = run_scenarios(Scenario.ACCEL_OFF, self.logs)
 | 
						|
    assert np.allclose(replayed_data['yaw_rate'], 0.0)
 | 
						|
    assert np.allclose(replayed_data['roll'], 0.0)
 | 
						|
    assert np.all(replayed_data['sensors_flag'] == 0.0)
 | 
						|
 | 
						|
  def test_accel_spike(self):
 | 
						|
    """
 | 
						|
    ToDo:
 | 
						|
    Test: an accelerometer spike in the middle of the segment
 | 
						|
    Expected Result: Right now, the kalman filter is not robust to small spikes like it is to gyroscope spikes.
 | 
						|
    """
 | 
						|
    orig_data, replayed_data = run_scenarios(Scenario.ACCEL_SPIKE_MIDWAY, self.logs)
 | 
						|
    assert np.allclose(orig_data['yaw_rate'], replayed_data['yaw_rate'], atol=np.radians(0.35))
 | 
						|
    assert np.allclose(orig_data['roll'], replayed_data['roll'], atol=np.radians(0.55))
 | 
						|
 | 
						|
  def test_single_timing_spike(self):
 | 
						|
    """
 | 
						|
    Test: timing of 150ms off for the single accelerometer message in the middle of the segment
 | 
						|
    Expected Result: the message is ignored, and inputsOK is False for that time
 | 
						|
    """
 | 
						|
    orig_data, replayed_data = run_scenarios(Scenario.SENSOR_TIMING_SPIKE_MIDWAY, self.logs)
 | 
						|
    assert np.all(replayed_data['inputs_flag'] == orig_data['inputs_flag'])
 | 
						|
    assert np.all(replayed_data['sensors_flag'] == orig_data['sensors_flag'])
 | 
						|
 | 
						|
  def test_consistent_timing_spikes(self):
 | 
						|
    """
 | 
						|
    Test: consistent timing spikes for N accelerometer messages in the middle of the segment
 | 
						|
    Expected Result: inputsOK becomes False after N of bad measurements
 | 
						|
    """
 | 
						|
    orig_data, replayed_data = run_scenarios(Scenario.SENSOR_TIMING_CONSISTENT_SPIKES, self.logs)
 | 
						|
    assert np.diff(replayed_data['inputs_flag'])[501] == -1.0
 | 
						|
    assert np.diff(replayed_data['inputs_flag'])[707] == 1.0
 | 
						|
 |