openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

105 lines
3.5 KiB

#!/usr/bin/env python3
import numpy as np
from . import gnss_model
from .kalman_helpers import ObservationKind
from .ekf_sym import EKF_sym
from selfdrive.locationd.kalman.loc_kf import parse_pr, parse_prr
class States():
ECEF_POS = slice(0,3) # x, y and z in ECEF in meters
ECEF_VELOCITY = slice(3,6)
CLOCK_BIAS = slice(6, 7) # clock bias in light-meters,
CLOCK_DRIFT = slice(7, 8) # clock drift in light-meters/s,
CLOCK_ACCELERATION = slice(8, 9) # clock acceleration in light-meters/s**2
GLONASS_BIAS = slice(9, 10) # clock drift in light-meters/s,
GLONASS_FREQ_SLOPE = slice(10, 11) # GLONASS bias in m expressed as bias + freq_num*freq_slope
class GNSSKalman():
def __init__(self, N=0, max_tracks=3000):
x_initial = np.array([-2712700.6008, -4281600.6679, 3859300.1830,
0, 0, 0,
0, 0, 0,
0, 0])
# state covariance
P_initial = np.diag([10000**2, 10000**2, 10000**2,
10**2, 10**2, 10**2,
(2000000)**2, (100)**2, (0.5)**2,
(10)**2, (1)**2])
# process noise
Q = np.diag([0.3**2, 0.3**2, 0.3**2,
3**2, 3**2, 3**2,
(.1)**2, (0)**2, (0.01)**2,
.1**2, (.01)**2])
self.dim_state = x_initial.shape[0]
# mahalanobis outlier rejection
maha_test_kinds = []#ObservationKind.PSEUDORANGE_RATE, ObservationKind.PSEUDORANGE, ObservationKind.PSEUDORANGE_GLONASS]
name = 'gnss'
gnss_model.gen_model(name, self.dim_state, maha_test_kinds)
# init filter
self.filter = EKF_sym(name, Q, x_initial, P_initial, self.dim_state, self.dim_state, maha_test_kinds=maha_test_kinds)
@property
def x(self):
return self.filter.state()
@property
def P(self):
return self.filter.covs()
def predict(self, t):
return self.filter.predict(t)
def rts_smooth(self, estimates):
return self.filter.rts_smooth(estimates, norm_quats=False)
def init_state(self, state, covs_diag=None, covs=None, filter_time=None):
if covs_diag is not None:
P = np.diag(covs_diag)
elif covs is not None:
P = covs
else:
P = self.filter.covs()
self.filter.init_state(state, P, filter_time)
def predict_and_observe(self, t, kind, data):
if len(data) > 0:
data = np.atleast_2d(data)
if kind == ObservationKind.PSEUDORANGE_GPS or kind == ObservationKind.PSEUDORANGE_GLONASS:
r = self.predict_and_update_pseudorange(data, t, kind)
elif kind == ObservationKind.PSEUDORANGE_RATE_GPS or kind == ObservationKind.PSEUDORANGE_RATE_GLONASS:
r = self.predict_and_update_pseudorange_rate(data, t, kind)
return r
def predict_and_update_pseudorange(self, meas, t, kind):
R = np.zeros((len(meas), 1, 1))
sat_pos_freq = np.zeros((len(meas), 4))
z = np.zeros((len(meas), 1))
for i, m in enumerate(meas):
z_i, R_i, sat_pos_freq_i = parse_pr(m)
sat_pos_freq[i,:] = sat_pos_freq_i
z[i,:] = z_i
R[i,:,:] = R_i
return self.filter.predict_and_update_batch(t, kind, z, R, sat_pos_freq)
def predict_and_update_pseudorange_rate(self, meas, t, kind):
R = np.zeros((len(meas), 1, 1))
z = np.zeros((len(meas), 1))
sat_pos_vel = np.zeros((len(meas), 6))
for i, m in enumerate(meas):
z_i, R_i, sat_pos_vel_i = parse_prr(m)
sat_pos_vel[i] = sat_pos_vel_i
R[i,:,:] = R_i
z[i, :] = z_i
return self.filter.predict_and_update_batch(t, kind, z, R, sat_pos_vel)
if __name__ == "__main__":
GNSSKalman()