You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
128 lines
3.9 KiB
128 lines
3.9 KiB
#!/usr/bin/env python3
|
|
import numpy as np
|
|
from selfdrive.locationd.kalman import loc_local_model
|
|
|
|
from selfdrive.locationd.kalman.kalman_helpers import ObservationKind
|
|
from selfdrive.locationd.kalman.ekf_sym import EKF_sym
|
|
|
|
|
|
|
|
class States():
|
|
VELOCITY = slice(0,3) # device frame velocity in m/s
|
|
ANGULAR_VELOCITY = slice(3, 6) # roll, pitch and yaw rates in device frame in radians/s
|
|
GYRO_BIAS = slice(6, 9) # roll, pitch and yaw biases
|
|
ODO_SCALE = slice(9, 10) # odometer scale
|
|
ACCELERATION = slice(10, 13) # Acceleration in device frame in m/s**2
|
|
|
|
|
|
class LocLocalKalman():
|
|
def __init__(self):
|
|
x_initial = np.array([0, 0, 0,
|
|
0, 0, 0,
|
|
0, 0, 0,
|
|
1,
|
|
0, 0, 0])
|
|
|
|
# state covariance
|
|
P_initial = np.diag([10**2, 10**2, 10**2,
|
|
1**2, 1**2, 1**2,
|
|
0.05**2, 0.05**2, 0.05**2,
|
|
0.02**2,
|
|
1**2, 1**2, 1**2])
|
|
|
|
# process noise
|
|
Q = np.diag([0.0**2, 0.0**2, 0.0**2,
|
|
.01**2, .01**2, .01**2,
|
|
(0.005/100)**2, (0.005/100)**2, (0.005/100)**2,
|
|
(0.02/100)**2,
|
|
3**2, 3**2, 3**2])
|
|
|
|
self.obs_noise = {ObservationKind.ODOMETRIC_SPEED: np.atleast_2d(0.2**2),
|
|
ObservationKind.PHONE_GYRO: np.diag([0.025**2, 0.025**2, 0.025**2])}
|
|
|
|
# MSCKF stuff
|
|
self.dim_state = len(x_initial)
|
|
self.dim_main = self.dim_state
|
|
|
|
name = 'loc_local'
|
|
loc_local_model.gen_model(name, self.dim_state)
|
|
|
|
# init filter
|
|
self.filter = EKF_sym(name, Q, x_initial, P_initial, self.dim_main, self.dim_main)
|
|
|
|
@property
|
|
def x(self):
|
|
return self.filter.state()
|
|
|
|
@property
|
|
def t(self):
|
|
return self.filter.filter_time
|
|
|
|
@property
|
|
def P(self):
|
|
return self.filter.covs()
|
|
|
|
def predict(self, t):
|
|
if self.t:
|
|
# Does NOT modify filter state
|
|
return self.filter._predict(self.x, self.P, t - self.t)[0]
|
|
else:
|
|
raise RuntimeError("Request predict on filter with uninitialized time")
|
|
|
|
def rts_smooth(self, estimates):
|
|
return self.filter.rts_smooth(estimates, norm_quats=True)
|
|
|
|
|
|
def init_state(self, state, covs_diag=None, covs=None, filter_time=None):
|
|
if covs_diag is not None:
|
|
P = np.diag(covs_diag)
|
|
elif covs is not None:
|
|
P = covs
|
|
else:
|
|
P = self.filter.covs()
|
|
self.filter.init_state(state, P, filter_time)
|
|
|
|
def predict_and_observe(self, t, kind, data):
|
|
if len(data) > 0:
|
|
data = np.atleast_2d(data)
|
|
if kind == ObservationKind.CAMERA_ODO_TRANSLATION:
|
|
r = self.predict_and_update_odo_trans(data, t, kind)
|
|
elif kind == ObservationKind.CAMERA_ODO_ROTATION:
|
|
r = self.predict_and_update_odo_rot(data, t, kind)
|
|
elif kind == ObservationKind.ODOMETRIC_SPEED:
|
|
r = self.predict_and_update_odo_speed(data, t, kind)
|
|
else:
|
|
r = self.filter.predict_and_update_batch(t, kind, data, self.get_R(kind, len(data)))
|
|
return r
|
|
|
|
def get_R(self, kind, n):
|
|
obs_noise = self.obs_noise[kind]
|
|
dim = obs_noise.shape[0]
|
|
R = np.zeros((n, dim, dim))
|
|
for i in range(n):
|
|
R[i,:,:] = obs_noise
|
|
return R
|
|
|
|
def predict_and_update_odo_speed(self, speed, t, kind):
|
|
z = np.array(speed)
|
|
R = np.zeros((len(speed), 1, 1))
|
|
for i, _ in enumerate(z):
|
|
R[i,:,:] = np.diag([0.2**2])
|
|
return self.filter.predict_and_update_batch(t, kind, z, R)
|
|
|
|
def predict_and_update_odo_trans(self, trans, t, kind):
|
|
z = trans[:,:3]
|
|
R = np.zeros((len(trans), 3, 3))
|
|
for i, _ in enumerate(z):
|
|
R[i,:,:] = np.diag(trans[i,3:]**2)
|
|
return self.filter.predict_and_update_batch(t, kind, z, R)
|
|
|
|
def predict_and_update_odo_rot(self, rot, t, kind):
|
|
z = rot[:,:3]
|
|
R = np.zeros((len(rot), 3, 3))
|
|
for i, _ in enumerate(z):
|
|
R[i,:,:] = np.diag(rot[i,3:]**2)
|
|
return self.filter.predict_and_update_batch(t, kind, z, R)
|
|
|
|
if __name__ == "__main__":
|
|
LocLocalKalman()
|
|
|